
FIRST CQ MEASUREMENTS AND SKIN DOSE MEASUREMENTS WITH RADIOCHROMIC FILMS

SYRMA-3D Collaboration Meeting

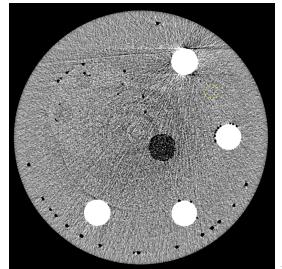
Anna Veronese

17 February 2017

QC PHANTOM MATERIALS



QC PHANTOM


Acquisition and Reconstruction Parameters:

	MODALITA' DI ACQUISIZIONE													
Modalità	Velocità (deg/s)	Irradiation Time (s)	Filtri Al (mm)	IOC_1 (A.U.)	Lx	Altezza Irraggiata (mm)	Air Kerma at Breast Position	MGD_t (mGy)	MGD_v (mGy)	Dead Time	Proiezioni	Shutter (ms)		Pixel Ricostruzione
Alta Dose	4,5	40	3	16000	16,373	3	36,5	28,9		DTF	1250	33	3	60
Bassa Dose	4,5	40	7,875	8190	16,373	3	13,47	10,6	5,53	DTF	1250	33	3	60

QC PHANTOM IMAGES 35 keV High Dose:

QC PHANTOM IMAGES 35 keV High Dose:

Average CT number of water:

PARAMETRO	DEFINIZIONE	DISPOSITIVO	PROCEDURA	VALUTAZIONE
Numero CT	Il numero CT rappresenta	Fantoccio CQ	Selezionare una regione di	II CT medio ottenuto
medio	l'attenuazione media		interesse al centro dell'immagine	deve essere confrontato
	associata a ciascuna area	Zona solo Acqua	e determinare il valore medio dei	con il numero CT di
	elementare dell'immagine.		pixel considerati. La ROI deve	riferimento
			contenere almeno 100 pixel; il	
			diametro non deve superare il	
			10% dell'immagine del dispositivo	
			di prova	

QC PHANTOM MEASUREMENTS Average CT number of water:

35 keV HIGH DOSE

Misura 1	0,281
Misura 2	0,28
Misura 3	0,278
Media	0,27966667

Mu H20 0,307

Diff %	8.90336591
DIII 70	0,90330391

Area ROI 50x50 pixel

Noise and Uniformity:

PARAMETRO	DEFINIZIONE	DISPOSITIVO	PROCEDURA	VALUTAZIONE
Rumore	Il rumore è definito come la variazione	Fantoccio CQ	Selezionare una regione di	Il rumore deve essere valutato
	dei numeri CT rispetto a un valor medio		interesse al centro dell'immagine	confrontando la deviazione standard
	in un'area definita dell'immagine di una	Zona solo Acqua	e determinare il valore medio dei	dei numeri CT nella regione di
	sostanza uniforme. Il valore è espresso		pixel considerati. La ROI deve	interesse con il valore di riferimento
	dalla deviazione standard dei numeri		contenere almeno 100 pixel; il	
	CT della sostanza in una ROI		diametro non deve superare il	
			10% dell'immagine del dispositivo	
			di prova.	
Uniformità	L'uniformità è la costanza dei numeri	Fantoccio CQ	Selezionare una regione di	L'uniformità si ottiene dalle
	CT dell'immagine in un materiale		interesse al centro dell'immagine	differenze tra il numero CT medio della
	omogeneo attraverso il campo	Zona solo Acqua	e determinare il valore medio dei	ROI centrale e il numero CT medio
	d'esame		pixel considerati. Ripetere su altre	delle ROI ai bordi
			quattro ROI non sovrapposte	
			poizionate a 1 cm dal bordo del	
			dispositivo di prova.	

Noise and Uniformity:

ORE	CT # Medio	STD Dev
Centro	0,28	0,015
12	0,288	0,012
3	0,28833333	0,012
6	0,28733333	0,01166667
9	0,28833333	0,011

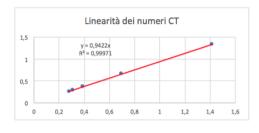
Uniformità
0,00833
Uniformità %
2,976190476

CENTRO								
	Misura 1	Misura 2	Misura 3					
CT medio	0,281	0,28	0,279					
STD dev	0,016	0,015	0,014					
Media CT	0,28							
Media std_dev	0,015							

Rumore Centro 5,357142	%
5,357142	857

CT Number Linearity:

PARAMETRO	DEFINIZIONE	DISPOSITIVO	PROCEDURA	VALUTAZIONE
Linearita`	E' la relazione tra il	Fantoccio CQ	Acquisire l'immagine e	Si registrano l'equazione
	numero CT ed i		leggere il valore del numero	della retta e di R^2 e si
	coefficienti di	Zona con Rods	CT in corrispondenza dei	verifica che non ci siano
	attenuazione lineare		materiali. Fittare con una	significative variazioni nel
			retta.	tempo
Scala di Contrasto	La scala di contrasto è	Fantoccio CQ	Acquisire l'immagine e	Si registra il valore della
	definita come:		leggere il valore del numero	scala di contrasto e si
	(mu1-mu2)/(CT1-CT2)	Zona con Rods	CT in corrispondenza dei	verifica che non ci siano
	dove 1 e 2 sono due		materiali. Calcolare il valore	significative variazioni nel
	materiali simili all'acqua		della scala di contrasto.	tempo


CT Number Linearity:

35 keV HIGH DOSE

Materiale	Water	BR12	Nylon	PVC	Plexiglass	Delrin	Teflon
μ (a 35 KeV)	0,307	0,279	0,387	1,414	0,309	0,387	0,692
CT#	0,288	0,247	0,366	1,334	0,289	0,364	0,656

	μ	CT#
Nylon	0,387	0,366
Plexiglass	0,309	0,289
Delrin	0,387	0,364
BR12	0,279	0,247
Water	0,307	0,288
Teflon	0,692	0,656
PVC	1,41	1,334

QC PHANTOM MEASUREMENTS RESULTS

Synthesis of the Results:

SINTESI DEI RISULTATI									
Modalità Linear. Scala CT# contr.		CT# medio %	Rumore centro %	Unif. spaz.	Unif. spaz. %				
Alta Dose	0,97618	106,7	8,9	5,3	0,0083	2,98			
Bassa Dose		, and the second							

QC PHANTOM MEASUREMENTS RESULTS Synthesis of the Results:

		RIFERIMENTI E TOLLERANZE			
			35 keV High Dose		
Parametri	Toll. Hospital	Toll. Koning	Misura	Compatibilità Hospital	Compatibilità Koning
Rumore: limite di allarme	±10%	8 HU	5,3	SI	NO
Rumore: limite di sospensione	±25%	-	5,3	SI	-
Uniformità	±8 HU	±15 HU	0,0083	NO	NO
Numero CT medio	±4 HU	±10 HU	0,280	NO	NO
Linearità: H20 allarme	rif ± 5 HU	-	0,288	NO	-
Linearità: H20 sospensione	rif ± 20 HU	-	0,288	NO	-
Linearità: BR12 allarme	rif ± 10 HU	-	0,247	NO	-
Linearità: BR12 sospensione	rif ± 30 HU	-	0,247	NO	-
Linearità: Plexiglas allarme	rif ± 10 HU	-	0,289	NO	-
Linearità: Plexiglas sospensione	rif ± 30 HU	-	0,289	NO	-
Linearità: Delrin allarme	rif ± 10 HU	-	0,364	NO	-
Linearità: Delrin sospensione	rif ± 30 HU	-	0,364	NO	-
Linearità: Teflon allarme	rif ± 10 HU	-	0,656	NO	-
Linearità: Teflon sospensione	rif ± 30 HU	-	0,656	NO	-
Linearità: PVC allarme	rif ± 10 HU	-	1,334	NO	-
Linearità: PVC sospensione	rif ± 30 HU	-	1,334	NO	-

QC PHANTOM MEASUREMENTS RESULTS

What we learned:

- Nylon isn't Nylon... It's Delrin!
- Plexiglas absorbs ≈ water @ 35 keV;
- Low Contrast Details are unresolved;
- Ring artefacts affect uniformity especially in the central area;
- PVC generated streaking artefacts: is it too absorbing?

SKIN DOSE MEASUREMENTS USING RADIOCHROMIC FILMS

Aim:

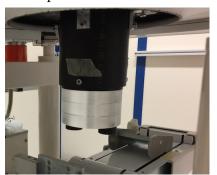
- Measure the dose to the patient's skin;
- Different irradiation modalities.

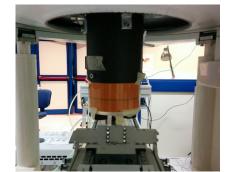
Radiochromic Films:

- GafChromicTM XR-QA2;
- Sensitive 1-200 mGy;
- Properly Calibrated.

MEASUREMENTS AT THE SYRMEP BEAMLINE SYRMEP Beamline @Elettra:

- Elettra @ 2.4 GeV;
- Laminar SR beam 3 mm height (@slits);
- Energy 38 keV;
- IOC gives the air-Kerma.

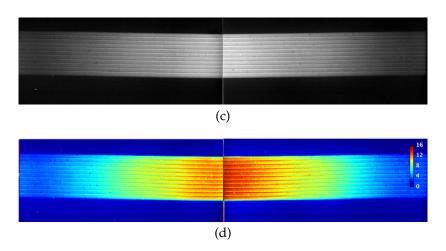




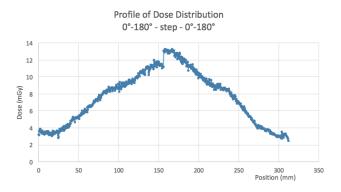
MEASUREMENTS AT THE SYRMEP BEAMLINE

Cylindrical Phantom 10 cm in diameter on patient's support:

- diameter, symmetry and μ similar to breast;
- two pieces of films tightly wrapped around it to simulate patient's skin.

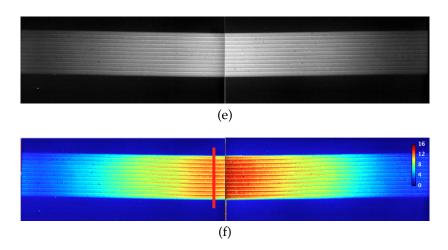


MEASUREMENTS AT THE SYRMEP BEAMLINE

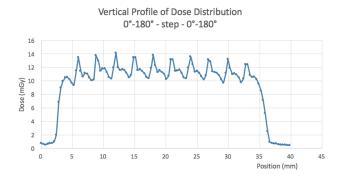

Four different irradiation modalities on different pieces of film:

- 180°
- 360°
- 0°-180°- step 0°-180°
- 0° -180° step 180° -360°

Radiochromic film scan:

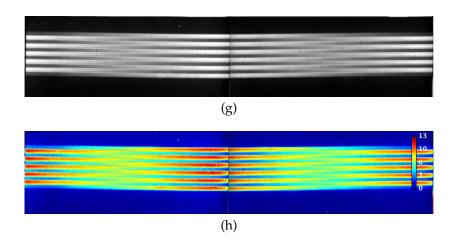


Profile of horizontal dose distribution:

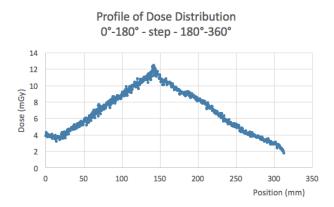


- Minimum dose: 18% of the maximum dose;
- MGD_t = 6.9 mGy \rightarrow Dose up to 205% of MGD_t.

Profile of vertical dose distribution:

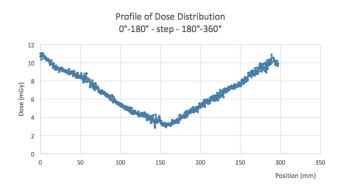


Profile of vertical dose distribution:

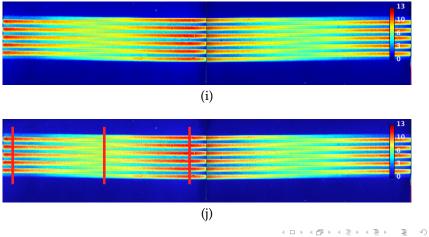


• Maximum peak-to-valley difference: 33% of the maximum dose.

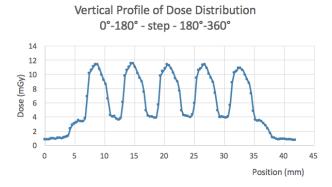
Radiochromic film scan:



Profile of horizontal dose distribution for odd slices:

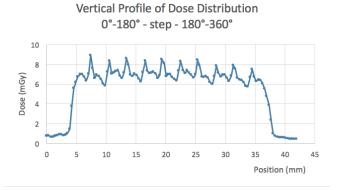

• Minimum dose: 20% of the maximum dose.

Profile of horizontal dose distribution for even slices:

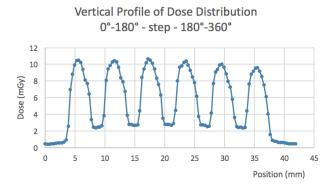


- Minimum dose: 20% of the maximum dose.
- MGD_t = 6.9 mGy \rightarrow Dose up to 170% of MGD_t.

Profile of vertical dose distribution: we see three different patterns



Profile of vertical dose distribution:


• Maximum peak-to-valley difference: 80% of the maximum dose.

Profile of vertical dose distribution:

- Maximum peak-to-valley difference: 34% of the maximum dose.
- MGD_t = 6.9 mGy \rightarrow Dose up to 120% of MGD_t.

Profile of vertical dose distribution:

• Maximum peak-to-valley difference: 77% of the maximum dose.

CONCLUSIONS AND COMMENTS

We were able to measure the dose to the skin in different irradiation conditions:

- In 180° the non irradiated skin receives > 10% of the maximum dose;
- 0°-180°- step 0°-180° gives high areas of superposition (with this step);
- 0°-180°- step 180°-360° is a good intermediate irradiation (less superposition).

FUTURE MEASUREMENTS

In the future we would like to repeat the measure with...

- Different step between slices to study the superposition;
- Different energies;
- Different doses.

THE END

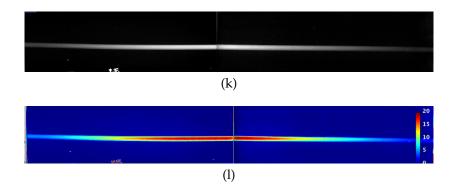
Thank you for you kind attention!

WHAT IS THE MEAN GLANDULAR DOSE (MGD)?

• For the whole volume irradiated, MGD(mGy) is calculated from the total energy deposited (E_g) in the total glandular mass of the breast (M_g), as:

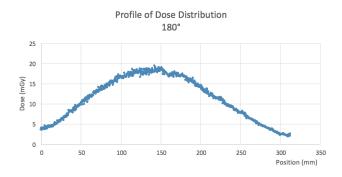
$$MGD = E_g/M_g$$

• For a partial irradiation, MGD_v (mGy) can be calculated from the energy (eg) deposited only in the glandular mass of the directly irradiated breast volume (mg), as:


$$MGD_v = e_g \! / \! m_g$$

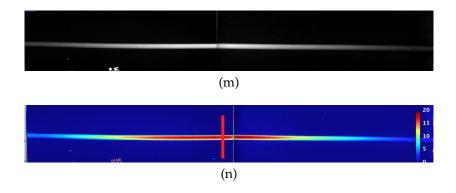
 Considering the scattered radiation coming outside of the irradiated volume, MGD_t is the ratio between the total energy deposited in the whole breast (E_g) and the glandular mass in the irradiated volume (m_g):

$$MGD_t = E_g/m_g$$

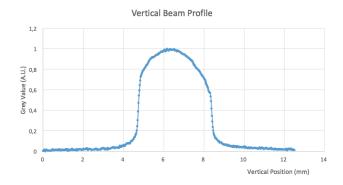

180°

Radiochromic film scan:

180°

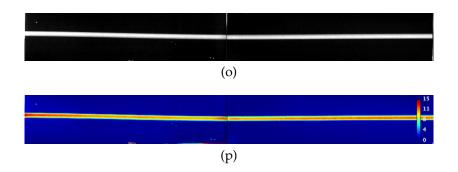

Profile of horizontal dose distribution:

- Minimum dose: 9.5% of the maximum dose;
- MGD_v = 7,8 mGy \rightarrow Dose up to 240% of MGD_v.

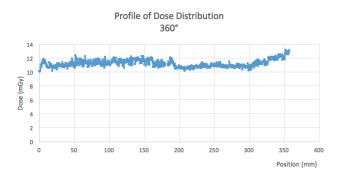

VERTICAL BEAM PROFILE

Profile of vertical dose distribution:

VERTICAL BEAM PROFILE


Profile of vertical dose distribution:

- 1200 dpi scan: 1 pixel=2 μ m;
- FWHM=3,61 mm;
- Magnification: 20%.


360°

Radiochromic film scan:

360°

Profile of horizontal dose distribution:

- Maximum variation: 24% of the maximum dose;
- MGD_v = 7.8 mGy \rightarrow Dose 175% 130% of MGD_v.

DOSE EVALUATION

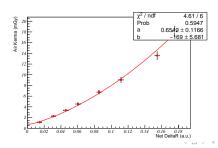
The dose is proportional to the change in reflectance of the film:

- Films have to be scanned both before and after irradiation;
- PV (pixel value) change is evaluated as:

$$\Delta R = R_{before} - R_{after} = \frac{PV_{before}}{2^{16}} - \frac{PV_{after}}{2^{16}}$$

A piece of control film is never irradiated:

$$\Delta R^{control} = R_{before}^{control} - R_{after}^{control} = \frac{PV_{before}^{control}}{2^{16}} - \frac{PV_{after}^{control}}{2^{16}}$$


• The net change in reflectance is:

$$net\Delta R = \Delta R - \Delta R^{control}$$

CALIBRATION PROCEDURE

We want a dose-response curve for the specific energy (38 keV):

- Obtained plotting the air Kerma K^{film} as a function of the corresponding film response net∆R;
- 3.4×4 cm film pieces exposed at the same time;
- Different values if air-Kerma (1-20 mGy);
- Best fitting funtion logarithm one: $K^{film} = a + \frac{b \text{ net} \Delta R}{\ln (\text{net} \Delta R)}$

OTHER QC PROTOCOL MEASUREMENTS

Ideas for other measurements:

- Air Slits and Vacuum Slits control;
- μ curve to verify energy;
- Phantom to verify bed movement;
- CTDI to check dose.