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Introduction

The unit from the University of Genoa has a wide experience in water quality and quantity
management in the urban areas, having developed research and collaboration projects with
municipalities, and other local authorities on this and related subjects. Such experience is
documented by the specific curricula of the staff members involved in the project, all of them being
researchers in the hydrology and water management field.

Also, a relevant contribution to the project activities is derived from the availability of one
experimental site for water quantity control and the results of various water quality monitoring
campaigns performed all over the regional territory at residential, industrial, commercial and
infrastructure sites. The experimental site is constituted of a fully monitored green roof system
obtained after renovation of the existing green coverage of one of the main buildings of the university,
therefore a very controlled and easily manageable situation.

From the dissemination point of view, it is worth mentioning the series of national annual conferences
organised by the University of Genoa in this specific field since 2003, on the themes of “Sustainable
Urban Drainage” involving the main Local and National Authorities. The main objective of such
initiatives was to provide a forum for researchers, practitioners and companies in the field so as to
foster the exchange of knowledge and operational experiences between the various subjects
involved. As for the capacity to directly influence local/regional policies we can mention here the
contribution provided, within a recently completed EU funded LIFE Environment project, to the
contents of the new text of the regulation about storm water quality and treatment requirements –
currently in preparation by the competent authorities of the Liguria Region of Italy – which certainly
constitutes one of the most relevant practical consequences achieved.

The following projects have been financed to the in the University of Genova with interregional
cooperation or Structural Funds:

-ECOMAWARU “ECO-sustainable MAnagement of WAter and wastewater in RUral communities”,
EC LIFE+ 2008 Environment Project (2010-2013);

-CHEF “Cultural Heritage Protection against Floods”, 6th Framework Programme, Specific Targeted
Research or Innovation Project (2007-2009);

-ESTRUS “Enhanced and Sustainable TReatment for Urban Stormwater” , EC LIFE 2004
Environment Project (2005-2008);

-RIVES Project "Protection of the territory against natural risks" - INTERREG III A (ALCOTRA)
Program, contribution of the University, activities on territorial planning and proposals on urban and
protezione civile instruments and procedures " (2005-2006) in behalf of Provinces of Cuneo and
Imperia;

-MOS “Integrated Multi-Objective System for Optimal management of urban drainage”, EC LIFE
2000 Environment Programme Project (2001-2004).

The unit from the University of Genoa has a wide experience in water quality and quantity
management in the urban areas, having developed research and collaboration projects with
municipalities, and other local authorities on this and related subjects.

       

Stan Brodsky  
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Goal: An analytic first approximation to QCD
• As Simple as Schrödinger Theory in Atomic Physics 

•Relativistic, Frame-Independent, Color-Confining 

•Confinement in QCD -- What is the analytic form of the confining interaction?  

•What sets the QCD mass scale? 

•QCD Running Coupling at all scales 

•Hadron Spectroscopy-Regge Trajectories 

•Light-Front Wavefunctions 

•Form Factors, Structure Functions, Hadronic Observables 

•Constituent Counting Rules 

•Hadronization at the Amplitude Level 

•Insights into QCD Condensates 

•Chiral Symmetry 

•Systematically improvable



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

Unique confinement potential!

QCD does not know what MeV units mean! 
Only Ratios of Masses Determined
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Invariance Principles of Quantum  Field Theory

• Polncarè Invariance:  Physical predictions must be 
independent of the observer’s Lorentz frame:  Front Form 

• Causality: Information within causal horizon:  Front Form 

• Gauge Invariance: Physical predictions of gauge theories 
must be independent of the choice of gauge 

• Scheme-Independence: Physical predictions of 
renormalizable theories must be independent of the 
choice of the renormalization scheme — Principle of 
Maximum Conformality (PMC) 

• Mass-Scale Invariance: Conformal Invariance of the 
Action (DAFF) 



Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has
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Instant Form Front Form 

z0 = 1
⇥QCD

z�

� = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

� = ct� z

z0 = 1
⇥QCD

z�

� = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

� = ct� z

Evolve in  
light-front time!

Evolve in  
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 
392 (1949)

Dirac’s Amazing Idea: 
The “Front Form”

Casual, Boost Invariant!

• Satisfies Poincarè Invariance



Each element of  
flash photograph   

illuminated   
at same LF time

� = t + z/c

Eigenstate -- independent of �

Evolve in LF time

P� = i
d

d�

HQCD
LF |�h >= M2

h|�h >

HLF = P+P� � ~P 2
?

Causal, frame-independent



HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 

Light-Front Wavefunctions

Remarkable new insights from AdS/CFT, the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian

 (xi,
~

k?i,�i)

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz
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⇥ = d�s(Q2)
d lnQ2 < 0

u

Off-shell in invariant mass

x =
k+

P+
=

k0 + k3

P 0 + P 3



General remarks about orbital angular mo-
mentum
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�n
i
⌃b�i = ⌃0�

�n
i xi = 1

�n
i=1(xi

⌃P�+ ⌃k�i) = ⌃P�

xi
⌃P�+ ⌃k�i

�n
i

⌃k�i = ⌃0�

�n
i xi = 1

P+, ↵P+

xiP
+, xi

↵P⇤+ ↵k⇤i

ẑ
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Causal, Frame-independent.  Creation Operators on Simple Vacuum, 
Current Matrix Elements are Overlaps of LFWFS

|p, Jz >=
X

n=3

 n(xi,
~

k?i,�i)|n;xi,
~

k?i,�i >

Invariant under boosts!  Independent of Pμ 

Eigenstate of LF Hamiltonian 

 n(xi,
~

k?i ,�i)

HQCD
LF |�h >= M2

h|�h >

• Polncarè Invariance



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

Sivers, T-odd from lensing



Advantages of the Dirac’s Front Form for Hadron Physics

• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent: no boosts, no pancakes! 

• Same structure function measured at an e p collider and the 
proton rest frame 

• No dependence of hadron structure on observer’s frame 

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no vacuum condensates! 

• Profound implications for Cosmological Constant

Physics Independent of Observer’s Motion

Terrell, Penrose

Poincare’ Invariant



Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�

i

[
m2 + k2

�
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)
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%$
!
$!"

b!
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(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

Hint
LF

LFWFs: Off-shell in P- and invariant mass

|p, Jz >=
X

n=3

 n(xi,
~

k?i,�i)|n;xi,
~

k?i,�i >



Higgs Zero Mode

Yukawa Higgs coupling of confined quark to Higgs zero mode gives  

General remarks about orbital angular mo-
mentum
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|p,Sz>= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi>|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n
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sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
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x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q
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Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden Color
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LF |�h >= M2

h|�h >
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Form Factors are 
Overlaps of LFWFs

Interaction  
picture

Drell &Yan, West 
Exact LF formula!

Front Form

Drell, sjb



p

�⇤

p + q

Must include vacuum-induced currents to compute form factors and 
other current matrix elements in instant form

Boost are dynamical in instant form

acausal event
Instant Form



zero for q+ = 0

Calculation of Form Factors in  Equal-Time Theory

Instant Form

Calculation of Form Factors in  Light-Front Theory

Front Form

Absent for q+ = 0 zero !!

Need vacuum-induced currents

Exact Answer!
No vacuum graphs



For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
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j
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whereas the Pauli and electric dipole form factors are given by
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.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧

�i,ci,fi

⇤
n⌃
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, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
i

2
⇥ (12)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i)�
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧

�i,ci,fi

⇤
n⌃

i=1

�⌥ ⌥ dxi d2k⇧i

2(2⇤)3

⇥⌅

16⇤3�

�

1�
n⇧

i=1

xi

⇥

�(2)

�
n⇧

i=1

k⇧i

⇥

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].

6

Drell, sjb
A(⇤,�⌅) = 1

2⇥

�
d�e

i
2⇤�M(�,�⌅)

P+, �P⌅

xiP
+, xi

�P⌅+ �k⌅i

� = Q2

2p·q

x̂, ŷ plane

M2(L) ⇤ L

Must have �↵z = ±1 to have nonzero F2(q2)

-

� = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

⇤(x, b⌅)

x

b⌅(GeV)�1

Identify z ⇤ ⇥ =
q

x(1� x) b⌅

Nonzero Proton Anomalous Moment --> 
Nonzero orbital  quark angular momentum

Exact LF Formula for Pauli Form Factor

Lz=+1 Lz=0
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•LF wavefunctions play the role of Schrödinger wavefunctions 
in Atomic Physics 

•LFWFs=Hadron Eigensolutions: Direct Connection to QCD 
Lagrangian 

•Relativistic, frame-independent: no boosts, no disc 
contraction, Melosh built into LF spinors  

•Hadronic observables computed from LFWFs: Form factors, 
Structure Functions, Distribution  Amplitudes, GPDs, TMDs, 
Weak Decays, .... modulo `lensing’ from ISIs, FSIs 

•Cannot compute current matrix elements using instant form 
from eigensolutions alone -- need to include vacuum currents! 

•Hadron Physics without LFWFs is like Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1



T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

~Sp ·~q⇥~pq

 Hwang,  Schmidt, 
sjb

Light-Front Wavefunction  
S and P- Waves!

QCD S- and P- 
Coulomb Phases 

--Wilson Line 

“Lensing Effect”

i

Collins, Burkardt, Ji, 
Yuan. Pasquini, ...

Leading-Twist 
Rescattering 

Violates pQCD 
Factorization!

Sign reversal in DY!

 “Lensing” 
involves soft 

scales



• “History” : Compute any subgraph only once since the LFPth 
numerator does not depend on the process — only the 
denominator changes!

• Wick Theorem applies, but few amplitudes since all k+ > 0.

• Jz Conservation at every vertex

• Unitarity is explicit

• Loop Integrals are 3-dimensional

• hadronization: coalesce comoving quarks and gluons to 
hadrons using light-front wavefunctions

Light-Front Perturbation Theory for pQCD

Z 1

0
dx

Z
d

2
k?

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

at order gn|
X

initial

Sz �
X

final

Sz |  n
K. Chiu, sjb

T = HI + HI
1

M2
initial �M2

intermediate + i✏
HI + · · ·



Need a First Approximation to QCD 

 Comparable in simplicity to 
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining 

Origin of hadronic mass scale

AdS/QCD 
Light-Front Holography  
Superconformal Algebra



Coulomb  potential  
Veff ⇥ VC(r) = ��

r
Semiclassical first approximation to QED  

Bohr Spectrum

HQED

[� �2

2mred
+ Ve�(�S,�r)] �(�r) = E �(�r)

[� 1
2mred

d2

dr2
+

1
2mred

⌃(⌃ + 1)
r2

+ Ve�(r, S, ⌃)] �(r) = E �(r)

(H0 + Hint) |� >= E |� > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, �,⇥

Includes Lamb Shift, quantum corrections

QED atoms: positronium 
and muonium

Schrödinger Eq.



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential!  

HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

Semiclassical first approximation to QCD  

U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD

AdS/QCD:

�2 = x(1� x)b2
�

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Sums an infinite # diagrams

LQCD

Eliminate higher Fock states              
and retarded interactions

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣) mq = 0

Single variable  ζ



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

 ' 0.5 GeV

• Fubini, Rabinovici  

e'(z) = e+2z2

Single variable  ζ



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d2

dx2
+

g

x2
+

4uw � v2

4
x2

�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term
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fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double-Parton Processes
Retains conformal invariance of action despite mass scale! 



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 
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M2!GeV2"#b$ n! 3 n! 2 n! 1 n! 0

Ρ#1700$

Ρ#1450$
Ρ#770$

a2#1320$
Ρ3#1690$

a4#2040$

f2#1270$

f4#2050$
f2#2300$
f2#1950$

Ω#782$

Ω#1650$
Ω#1420$

Ω3#1670$

L

0 1 2 3 4

0

1

2

3

4

5

6M2!GeV2"#a$ n! 0n! 1n! 2

LΠ#140$
b1#1235$

Π2#1670$
Π#1300$

Π#1800$
Π2#1880$

0 1 2 3

0

1

2

3

4

5

M2(n,L, S) = 42(n + L + S/2)

mu = md = 0 de Tèramond, Dosch, sjb



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2
= h |

X

a

m2
a

/x
a

| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�

m

2
q

x

+
m

2
q

1�x

�

e�
1
2� ⇣

2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S

= M2
K

± + 4�

✓

n +

J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

m
u

= m
d

= 46 MeV, m
s

= 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z

C. D. Roberts et al.



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

�(x, k�)(GeV)

�(x, k�)

• Light Front Wavefunctions:                                   

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

“Hadronization at the Amplitude Level”

o↵-shell in P� and invariant massM2
qq̄

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Boost-invariant LFWF connects confined quarks and gluons to hadrons

x,

~

k?

1� x,�~

k?
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1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 

AdS5



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT

AdS5
Exploring QCD, Cambridge, August 20-24, 2007 Page 9
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•Soft-wall dilaton profile breaks 
conformal invariance

•Color Confinement in z

•Introduces confinement scale

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS/QCD

Exploring QCD, Cambridge, August 20-24, 2007 Page 9



AdS Soft-Wall Schrödinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5 

Identical to Single-Variable Light-Front Bound State Equation in ζ! 

U(z) = �4z2 + 2�2(L + S � 1)

• Dosch, de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

 ' 0.5 GeV

• Fubini, Rabinovici  

e'(z) = e+2z2

Single variable  ζ



• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 

Introduce  “Dilaton" to simulate confinement analytically

Positive-sign dilaton • de Teramond, sjbe'(z) = e+2z2



Uniqueness of Dilaton

pion is massless in chiral limit iff 
p=2!

p

m2
⇡/2

'p(z) = pzp

e'(z) = e+2z2

• Dosch, de Tèramond, sjb



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q+} = 2H, {S, S+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  

+[�@
x

+
f

x

], Q

+ =  [@
x

+
f

x

],
S =  

+
x, S

+ =  x

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics 

Q '
p

H, S '
p

K



Consider Rw = Q + wS;

w: dimensions of mass squared

Superconformal Quantum Mechanics 

Retains Conformal Invariance of Action

G11 =
�
� @

2
x

+ w

2
x

2 + 2wf � w +
4(f + 1

2 )2 � 1
4x

2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R+
w} = 2H + 2w2K + 2wfI � 2wB

G22 =
�
� @

2
x

+ w

2
x

2 + 2wf + w +
4(f � 1

2 )2 � 1
4x

2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2
(n,L) = 42

(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2

Q '
p

H, S '
p

K



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM ) Same κ!

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 

Superconformal  
Quantum Mechanics 



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Quark Chiral 
Symmetry of 
Eigenstate!

Nucleon: Equal Probability for L=0,1
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2





Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

Dosch, de Teramond, Lorce, sjb

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2
)

Deur
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Trinity College, Dublin, 20 October 2015
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Solid line:  κ = 0.53 GeV

Superconformal meson-nucleon partners



Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20



Using SU(6) flavor symmetry and normalization to static quantities
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From overlap of L = 1 and L = 0 LFWFs



Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21
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Consistent with counting rule, twist 3



Q2 GeV2

F1
p
N!N"!Q2"

0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

Q4 F1
p!Q2"

Q2 GeV2

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Predict hadron spectroscopy and dynamics

Excited Baryons in Holographic QCD G. de Teramond & sjb

0

2

4

(a) (b)
6

0 1 2 3 4
9-2009
8796A3

M2

L

0 1 2 3 4

L

N(1710)

N(1440)

N(940)

N(1680)

N(2200)

N(1720) Δ(1600)

Δ(1950)

Δ(2420)

Δ(1905)

Δ(1920)

Δ(1910)

Δ(1232)

n=3 n=2 n=1 n=0

n=3 n=2 n=1 n=0



FIG. 1. Polarization measurements and predictions for the proton and neutron Dirac form factors [69,

70]. The blue line is the prediction of the proton Dirac FF from LFHQCD, Eq. (21) multiplied by Q4.

The orange and the green lines are predictions for the neutron Dirac FF, Q4Fn
1 (Q

2), from Eq. (23)

and from Eq. (25) with the phenomenological factor r = 2.08, respectively. The dotted lines are the

asymptotic predictions. The asymptotic value of the neutron FF is determined using r = 2.08.

FIG. 2. Polarization measurements and predictions for the proton and neutron Pauli form factors [69,

70]. The blue line is the proton Pauli FF, Q6F p
2 (Q

2) prediction, with �p = 0.27 in Eq. (22). The green

line is the prediction for the neutron Pauli FF, Q6Fn
2 (Q

2), with �n = 0.38 in Eq. (24) from LFHQCD.

The dotted lines are the asymptotic predictions.
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FIG. 7. LFHQCD prediction of the up and the down-quark contributions to the Pauli FF multiplied

by ��1
q Q6. The data is from Ref. [70].

Finally, it is important to recall that we have used a universal value for the confinement

scale  in deriving Eq. (9), but in fact the value of  for the nucleon wave function, which is

obtained from the nucleon slope, is slightly smaller than the value of  in the EM current which

is obtained from the rho mass [40]; it determines the slope of the vector meson trajectory of

radial excitations – the poles in the EM current. Indeed, as explained in the Appendix A, we

have used the di↵erence in the value of the scale , obtained from the average of all meson and

all baryon trajectories to evaluate the theoretical uncertainty of our holographic model. Since

the wave function determines the low energy bound state dynamics, we expect that observables

which depend on the nucleon wave function, such as radii, are more sensitive to the lower value

of , whereas at higher energies, where the amplitudes depend on the structure of the vector

meson poles, we would expect that the data is better described by the slightly higher value of

 from the rho trajectory of radial excitations. A simple analysis of the data shows that this is

indeed the case.

V. CONCLUSIONS

We have performed a complete analysis of the nucleon electromagnetic form factors in the

space-like region in the framework of light-front holographic QCD. The essential dynamical el-
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Flavor Dependence of Q6 F2(Q2)
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
⇤
z2⇧2

z � z
�
1 + 2�2z2

⇥
⇧z �Q2z2

⌅
J�(Q, z) = 0.

• Solution bulk-to-boundary propagator

J�(Q, z) = �
⇧

1 +
Q2

4�2

⌃
U

⇧
Q2

4�2
, 0, �2z2

⌃
,

where U(a, b, c) is the confluent hypergeometric function

�(a)U(a, b, z) =
⌥ ⇥

0
e�ztta�1(1 + t)b�a�1dt.

• Form factor in presence of the dilaton background ⇥ = �2z2

F (Q2) = R3
⌥

dz

z3
e��2z2

⇥(z)J�(Q, z)⇥(z).

• For large Q2 ⇤ 4�2

J�(Q, z)⌅ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.

Exploring QCD, Cambridge, August 20-24, 2007 Page 34

Dressed 
Current 

 in Soft-Wall 
Model

de Tèramond  & sjb 
Grigoryan and Radyushkin

e'(z) = e+2z
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Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

x
i

to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2��m2

, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Meson Baryon

Tetraquark

Proton: quark + scalar diquark |q(qq) >
(Equal weight: L = 0, L = 1)

Baryon

Bosons, Fermions with Equal Mass!



 Stan BrodskySupersymmetric Features of QCD 
from LF Holography

Genoa
Feb 8, 2017

Features of Supersymmetric Equations

• J =L+S baryon simultaneously satisfies both 
equations of G with L , L+1 with same mass 
eigenvalue

• Jz =  Lz + 1/2 = (Lz + 1) - 1/2

• Proton spin carried by quark Lz

• Mass-degenerate meson “superpartner” with 
LM=LB+1. “Shifted  meson-baryon Duality”

Mesons and baryons have same 

Sz = ±1/2

 !

< Jz >=
1

2
(Sz

q =
1

2
, Lz = 0) +

1

2
(Sz

q = �1

2
, Lz = 1) =< Lz >=

1

2
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Solid line:  κ = 0.53 GeV

Superconformal meson-nucleon partners
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contributions in different angular-momentum configura-
tions from the broad and overlapping resonances. Thus,
there is now the chance to clarify the “missing” resonance
problem. The attempt to assign (nearly) all baryon reso-
nances to SU(3) multiplets should be helpful to identify
problems and to serve as guidance for further discussions.
This assignment requires to identify the leading orbital
angular momenta L and the spin S within the three-
quark system. Measured quantities are only the total an-
gular momentum, the spin J of the baryon, and its mass.
Here, theoretical input is required. We use a holographic
mass formula derived in [11] which reproduces the known
spectrum of nucleon and ∆ resonances with remarkable
precision.

In this paper, we shall use the word missing resonance
in a restricted sense. E.g., we may interpret the three
resonances N3/2+(1900), N5/2+(2000), N7/2+(1990) [12]
as members of a spin quartet, with orbital angular mo-
menta L = 2 and quark spin S = 3/2 coupling to the ob-
served particle spin J . In this interpretation, N1/2+(1880)
—observed in recent coupled-channel analyses [13]— was
missing to complete a quark spin quartet [14]. But the
existence of a N1/2+ resonance would be required in any
kind of quark model. More subtle is the question if two ad-
ditional doublets (N3/2+ , N5/2+) and (∆3/2+ , ∆5/2+) as
requested by symmetry arguments (see eq. (9) below) are
realized in nature. None of these states has been observed.
The latter type of resonances, i.e. the non-observation of a
complete L, S multiplet, we shall call missing resonances
in the context of this paper.

We refrain here from a discussion of the possibility that
baryon resonances are formed as parity doublets. If this
conjecture holds true, it gives an exciting new approach to
the internal dynamics of excited hadronic states; we give
here a few references for further reading [15–18]. However,
the predictive power of the conjecture is limited: it pre-
dicts that resonances should occur as parity doublets but
there is no prediction at which mass. In this article we
hence restrict ourselves to a discussion of the data within
the quark model and its symmetries.

The outline of the paper is as follows: In sects. 2 and 3
we summarise the empirical data on light-flavoured delta
and nucleon resonances, respectively. In particular we re-
call that these can be suitable organised according to lead-
ing and daughter Regge trajectories where the resonance
positions follow from a simple mass formula. In sect. 4
we summarise the relevant symmetries for light-flavoured
baryons and the classification of states in multiplets within
the framework of the (harmonic oscillator) constituent
quark model. In sect. 5 we discuss the structure of the
nucleon and ∆ resonances within the framework of this
classification, before concluding in sect. 6.

2 The mass spectrum of ∆ resonances

2.1 Regge trajectories

It is well known that meson and baryon resonances lie on
Regge trajectories, i.e. that their squared masses depend
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Fig. 1. The leading Regge trajectory: ∆ resonances with maxi-
mal J in a given mass range. Also shown is the Regge trajectory
for mesons with J = L + S.

linearly on the total angular momentum J . Figure 1 shows
such a plot; ∆ resonances are plotted having the largest
total angular momentum J in a given mass range. This
trajectory is called the leading Regge trajectory. The reso-
nances are consistent with having even orbital angular mo-
mentum L = 0, 2, 4, 6 and quark spin S = 3/2 maximally
aligned to form total angular momentum J = L+3/2. The
errors in the fit are given by the PDG errors and a second
systematic error of 30MeV added quadratically. This sys-
tematic error is introduced to avoid hard constraints from
well measured meson or baryon masses like the ∆(1232)
mass; the error can be interpreted as uncertainty due to
variations of the self-energy of different hadrons due to,
e.g., the proximity of (strong) decay thresholds.

Figure 1 also shows the leading Regge trajectory of
natural-parity mesons, again as a function of the total an-
gular momentum. Light mesons with approximate isospin
degeneracy and with J = L+1 are presented. Although it
is customary to plot the meson trajectories for L even and
L odd (for positive- and negative-parity mesons, respec-
tively) separately, there is no problem fitting both trajec-
tories simultaneously: This property is called MacDowell
symmetry [19].

The dotted line represents such a common fit to the
meson masses taken from the PDG [12]; the error in the fit
is given by the PDG errors and a second systematic error
of 30MeV added quadratically. The slope is determined
as 1.142GeV2. The ∆ trajectory is given by the ∆(1232)
mass and the slope as determined from the meson tra-
jectory. Obviously, mesons and ∆’s have the same Regge
slope. This observation is the basis for diquark models;
indeed, the QCD forces between quark and antiquark are
the same as those between quark and diquark.

The leading Regge trajectory:  Δ resonances with maximal J in a given mass range. 
Also shown is the Regge trajectory for mesons with J = L+S.
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Superconformal Algebra

• quark-antiquark meson (LM = LB+1))

• quark-diquark baryon (LB)

• quark-diquark baryon (LB+1)

• diquark-antidiquark tetraquark (LT = LB)

• Universal Regge slopes

2X2 Hadronic Multiplets
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Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

x
i

to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2��m2

, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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masses strongly break the conformal symmetry [18].

The structure of the hadronic mass generation obtained from the supersymmetric

Hamiltonian GS, Eq. (17), provides a frame-independent decomposition of the quadratic

masses for all four members of the supersymmetric multiplet. In the massless quark limit:

M2
H/� =

contribution from 2-dim

light-front harmonic oscillator

z }| {
(2n+ LH + 1)| {z }

kinetic

+(2n+ LH + 1)| {z }
potential

+

contribution from AdS and

superconformal algebra

z }| {
2(LH + s) + 2� . (25)

Here n is the radial excitation number and LH the LF angular momentum of the hadron

wave function; s is the total spin of the meson and the cluster respectively, � = �1 for the

meson and for the negative-chirality component of the baryon (the upper components

in the susy-doublet) and � = +1 for the positive-chirality component of baryon and

for the tetraquark (the lower components). The contributions to the hadron masses

squared from the light-front potential �2⇣2 and the light-front kinetic energy in the LF

Hamiltonian, are identical because of the virial theorem.

We emphasize that the supersymmetric features of hadron physics derived here from

superconformal quantum mechanics refers to the symmetry properties of the bound-

state wave functions of hadrons and not to quantum fields; there is therefore no need to

introduce new supersymmetric fields or particles such as squarks or gluinos.

We have argued that tetraquarks – which are degenerate with the baryons with the

same (leading) orbital angular momentum– are required to complete the supermulti-

plets predicted by the superconformal algebra. The tetraquarks are the bound states

of the same confined color-triplet diquarks and anti-diquarks which account for baryon

spectroscopy.

The light-front cluster decomposition [32, 33] for a bound state of N constituents

–as an “active” constituent interacting with the remaining cluster of N�1 constituents–

also has implications for the holographic description of form factors. As a result, the

form factor is written as the product of a two-body form factor multiplied by the form

factor of the N � 1 cluster evaluated at its characteristic scale. The form factor of the

N�1 cluster is then expressed recursively in terms of the form factor of the N�2 cluster,

and so forth, until the overall form factor is expressed as the N � 1 product of two-body

form factors evaluated at di↵erent characteristic scales. This cluster decomposition is

in complete agreement with the QCD twist assignment which leads to counting-rule

scaling laws [34, 35]. This solves a previous problem with the twist assignment for
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Universal Hadronic Features

• Universal quark light-front kinetic energy 

• Universal quark light-front potential energy 

• Universal Constant Term

�M2
LFKE = 2(1 + 2n + L)

�M2
LFPE = 2(1 + 2n + L)

M2 = �M2
LFKE + �M2

LFPE + �M2
spin

M2
spin = 22(S + L� 1 + 2ndiquark )

Equal: 
Virial 

Theorem!
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New World of Tetraquarks

• Diquark: Color-Confined Constituents: Color

• Diquark-Antidiquark bound states

3C ⇥ 3C = 3̄C + 6C

3̄C ⇥ 3C = 1C

Bound!

�(TN) ' 2�(pN)� �(⇡N)

3̄C

2
⇥
�([{qq}N) + �(qN)

⇤
� [�(qN) + �(q̄N)] = [�({qq}N) + �({qq}N)]

Candidates f0(980)I = 0, JP
= 0

+
, partner of proton

a1(1260)I = 0, JP
= 1

+
, partner of �(1233)
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Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry
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Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry



 Stan BrodskySupersymmetric Features of QCD 
from LF Holography

Genoa
Feb 8, 2017

Foundations of Light-Front 
Holography

• The QCD Lagrangian for mq =0 has no mass scale.  

• What determines the hadron mass scale? 

• DAFF principle: add terms linear in D and K to Conformal 
Hamiltonian:  Mass scale κ appears, but action remains scale 
invariant —> unique harmonic oscillator potential 

• Apply DAFF to the Poincare’ invariant LF Hamiltonian: Unique 
color-confining potential

• Fixes AdS5 dilaton: predicts Spin and Spin-Orbit Interactions

• Apply DAFF to Superconformal representation of the Lorentz group

• Predicts Meson, Baryon, Tetraquark spectroscopy, dynamics

• Supersymmetric Features of Spectrum



• Boost Invariant 

• Trivial LF vacuum! No condensate, but consistent with GMOR 

• Massless Pion 

• Hadron Eigenstates (even the pion) have LF Fock components of different Lz 

• Proton: equal probability 

• Self-Dual Massive Eigenstates: Proton is its own chiral partner. 

• Label State by minimum L as in Atomic Physics 

• Minimum L dominates at short distances                

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall 
AdS/QCD Model

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

No mass -degenerate parity partners!

Jz = +1/2 :< Lz >= 1/2, < Sz
q >= 0



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

from dilaton e
2z2



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)
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�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point
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Perturbative QCD

Holographic QCD

(asymptotic freedom)
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 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV MS scheme

⇤MS = 0.339± 0.019 GeV
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FIG. 2. Solid (blue) curve: predicted process-independent
RGI running-coupling α̂PI(k2), Eq. (6). The shaded (blue)
band bracketing this curve combines a 95% confidence-level
window based on existing lattice-QCD results for the gluon
two-point function with an error of 10% in the continuum
extraction of the RGI product LF in Eqs. (1). World data
on αg1

[55–80]. The shaded (yellow) band on k > 1GeV
represents αg1

obtained from the Bjorken sum by using QCD
evolution [81–83] to extrapolate high-k2 data into the depicted
region, following Refs. [55, 56]; and, for additional context, the
dashed (red) curve is the light-front holographic model of αg1

canvassed in Ref. [45].

charge αg1(k
2) are depicted in Fig. 2 and therein com-

pared with our prediction for the process-independent
RGI running-coupling α̂PI(k2). Owing to asymptotic
freedom, all reasonable definitions of a QCD effective
charge must agree on k2 ! 1GeV2 and our approach
guarantees this connection. To be specific, in terms of
the widely-used MS running coupling [3]:

αg1(k
2) = α

MS
(k2)(1 + 1.14α

MS
(k2) + . . .) , (8a)

α̂PI(k
2) = α

MS
(k2)(1 + 1.09α

MS
(k2) + . . .) , (8b)

where Eq. (8a) may be built from, e.g. Refs. [84, 85].
Significantly, there is also near precise agreement with

data on the IR domain, k2 " m2
0, and complete accord

on k2 ≥ m2
0. Fig. 1 makes plain that any agreement on

k2 ∈ [0.01, 1]GeV2 is non-trivial because ghost-gluon in-
teractions produce as much as 40% of α̂PI(k2) on this
domain: if these effects were omitted from the gluon
vacuum polarisation, then αg1 and α̂PI would differ by
roughly a factor of two on the critical domain of transi-
tion between strong and perturbative QCD.

5: Conclusions.—We have defined and calculated a
process-independent running-coupling for QCD, α̂PI(k2)
[Eq. (6), Fig. 1]. This is a new type of effective charge,
which is an analogue of the Gell-Mann–Low effective cou-
pling in QED, being completely determined by the gauge-
boson two-point function. Our prediction for α̂PI(k2) is

parameter-free, being obtained by combining the self-
consistent solution of a set of Dyson-Schwinger equa-
tions with results from lattice-QCD; and it smoothly uni-
fies the nonperturbative and perturbative domains of the
strong-interaction theory. This process-independent run-
ning coupling is known to unify a vast array of observ-
ables, e.g. the pion mass and decay constant, and the
light meson spectrum [86]; the parton distribution am-
plitudes of light- and heavy-mesons [87–89], associated
elastic and transition form factors [90, 91], etc.
Finally, and perhaps surprisingly at first sight, α̂PI(k2)

is almost pointwise identical at infrared momenta to the
process-dependent effective charge, αg1 , defined via the
Bjorken sum rule, one of the most basic constraints on
our knowledge of nucleon spin structure, and in com-
plete agreement on the domain of perturbative momenta
[Fig. 2]. Equivalence on the perturbative domain is guar-
anteed for any two reasonable definitions of QCD’s ef-
fective charge, but here the subleading terms differ by
just 4% [Eqs. (8)]. An excellent match at infrared mo-
menta, i.e. below the scale at which perturbation theory
would locate the Landau pole, is non-trivial; and crucial
to this agreement is the careful treatment and incorpo-
ration of a special class of gluon-ghost scattering effects.
One is naturally compelled to ask how these two appar-
ently unrelated definitions of a QCD effective charge can
be so similar? We attribute this outcome to a physi-
cally useful feature of the Bjorken sum rule, viz. it is
an isospin non-singlet relation and hence contributions
from many hard-to-compute processes are suppressed,
and these same processes are omitted in our computa-
tion of α̂PI(k2).
The analysis herein unifies two vastly different ap-

proaches to understanding the infrared behaviour of
QCD, one essentially phenomenological and the other de-
liberately computational, embedded within QCD. There
is no Landau pole in our predicted running coupling.
In fact, there is an inflection point at

√
k2 = 0.7GeV,

marking a transition wall at which, as momenta de-
creasing from the ultraviolet promote growth in the cou-
pling, that coupling turns away from the Landau pole,
the growth slows, and finally the coupling saturates:
α̂PI(k2 = 0) ≈ 0.9π [Fig. 2]. This unification identifies
the Bjorken sum rule as a near direct means by which to
gain empirical insight into a QCD analogue of the Gell-
Mann–Low effective charge.
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Process-independent strong running coupling
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We unify two widely different approaches to understanding the infrared behaviour of quantum
chromodynamics (QCD), one essentially phenomenological, based on data, and the other computa-
tional, realised via quantum field equations in the continuum theory. Using the latter, we explain
and calculate a process-independent running-coupling for QCD, a new type of effective charge that
is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is
almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which
provides one of the most basic constraints on our knowledge of nucleon spin structure. This re-
veals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD’s
Gell-Mann–Low effective charge.

1: Introduction.— In quantum gauge field theories de-
fined in four spacetime dimensions, the Lagrangian cou-
plings and masses do not remain constant. Instead, ow-
ing to the need for ultraviolet (UV) renormalisation, they
come to depend on a mass scale, which can often be re-
lated to the energy or momentum at which a given pro-
cess occurs. The archetype is quantum electrodynamics
(QED), for which a sensible perturbation theory can be
defined [1]. Within this framework, owing to the Ward
identity [2], there is a single running coupling, measur-
ing the strength of the photon–charged-fermion vertex,
which can be obtained by summing the collection of vir-
tual processes that change the bare photon into a dressed
object, viz. by computing the photon vacuum polarisa-
tion. QED’s running coupling is known to great accuracy
[3] and the running has been observed directly [4, 5].

A new coupling appears when electromagnetism is
combined with weak interactions to produce the Stan-
dard Electroweak Model [6]. It may be characterised by
sin2 θW , where θW is a scale-dependent angle which spec-
ifies the particular mixing between the model’s defining
neutral gauge bosons that produces the observed photon
and Z0-boson. A perturbation theory can also be de-
fined for the electroweak theory [7] so that sin2 θW can
be computed and compared with precise experiments [3].

At first sight, the addition of quantum chromodynam-
ics (QCD) [8] to the Standard Model does not quali-
tatively change anything, despite the presence of four
possibly distinct strong-interaction vertices (gluon-ghost,
three-gluon, four-gluon and gluon-quark) in the renor-
malised theory. An array of Slavnov-Taylor identities
(STIs) [9, 10], implementing BRST symmetry [11, 12]
(a generalisation of non-Abelian gauge invariance for the
quantised theory) ensures that a single running coupling
characterises all four interactions on the domain within
which perturbation theory is valid. The difference here
is that whilst QCD is asymptotically free and extant ev-

idence suggests that perturbation theory is valid at large
momentum scales, all dynamics is nonperturbative at
those scales typical of everyday strong-interaction phe-
nomena, e.g. ζ ! mp, where mp is the proton’s mass.

The questions that arise are how many distinct run-
ning couplings exist in nonperturbative QCD, and how
can they be computed? Given that there are four individ-
ual, apparently UV-divergent interaction vertices in the
perturbative treatment of QCD, there could be as many
as four distinct couplings at infrared (IR) momenta. (Of
course, if nonperturbatively there are two or more cou-
plings, they must all become equivalent on the perturba-
tive domain.) In our view, nonperturbatively, too, QCD
possesses a unique running coupling. The alternative ad-
mits the possibility of a different renormalisation-group-
invariant (RGI) intrinsic mass-scale for each coupling and
no guarantee of a connection between them. In such cir-
cumstances, BRST symmetry would likely be irreparably
broken by nonperturbative dynamics and one would be
pressed to conclude that QCD was non-renormalisable
owing to IR dynamics. There is no empirical evidence
to support such a conclusion: QCD does seem to be a
well-defined theory at all momentum scales, owing to the
dynamical generation of gluon [13–18] and quark masses
[19–21], which are large at IR momenta.

2: Process-independent running coupling.—Poincaré co-
variance is of enormous importance in modern physics,
e.g. it places severe limitations on the nature and number
of those independent amplitudes that are required to fully
specify any one of a gauge theory’s n-point Schwinger
functions (Euclidean Green functions). Analyses and
quantisation procedures that violate Poincaré covariance
lead to a rapid proliferation in the number of such func-
tions. For example, the gluon 2-point function (propaga-
tor, Dµν) is completely specified by one scalar function
in the class of linear covariant gauges; but, in the class of
axial gauges, two unconnected functions are required and
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• Regge spectroscopy—same slope in n,L for mesons, baryons

• Chiral features for mq=0: mπ =0, chiral-invariant proton

• Hadronic LFWFs

• Counting Rules

• Connection between hadron masses and ⇤MS

Superconformal AdS Light-Front Holographic QCD (LFHQCD) 

Meson-Baryon Mass Degeneracy for LM=LB+1

Features of  LF Holographic QCD 



Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

m⇢

mP
= 1p

2

Light-Front Holography:

⇤MS

m⇢
= 0.455± 0.031

“In other words, if you manage to calculate mP it better come out pro-

portional to ⇤QCD since ⇤QCD is the only quantity with dimension of mass

around.

Similarly for m⇢.

Put in precise terms, if you publish a paper with a formula giving m⇢/mP in

terms of pure numbers such as 2 and ⇡, the field theory community will hail

you as a conquering hero who has solved QCD exactly.”

(mq = 0)
m⇡ = 0

m⇢ ' 2.2 ⇤MSmp ' 3.21 ⇤MS

de Tèramond, Dosch, sjb
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Fundamental Hadronic Features of Hadrons 

• Partition of the Proton’s Mass: Potential vs. Kinetic Contributions

• Color Confinement

• Role of Quark Orbital Angular Momentum in the Proton

• Quark-Diquark Structure

• Quark Mass Contribution

• Baryonic Regge Trajectory

• Mesonic Supersymmetric Partners

• Proton Light-Front Wavefunctions and Dynamical Observables

• Form Factors, Distribution Amplitudes, Structure Functions

• Non-Perturbative - Perturbative QCD Transition

• Dimensional Transmutation: Mp/⇤MS

�M2
LFKE = 2(1 + 2n + L)

�M2
LFPE = 2(1 + 2n + L)

Virial Theorem

U(⇣2) = 4⇣2

Equal L=0,1

LM = LB + 1

m⇢ ' 2.2 ⇤MSmp ' 3.21 ⇤MS

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

�M

2 =<

m

2
q

x

>

from the Yukawa coupling  
to the Higgs zero mode

M2(n,LB) = 42(n + LB + 1)p

MS schemeQ0 = 0.87± 0.08 GeV



A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks



Structure of the Vacuum in Light-Front Dynamics

• Compare invariant mass in the instant-form in the hadron center-of-mass system P = 0,

M2
qq

= 4m2
q

+ 4p

2

with the invariant mass in the front-form in the constituent rest frame, k
q

+ k

q

= 0

M2
qq

=

k

2
? + m2

q

x(1� x)

obtain

U = V 2
+ 2

q

p

2
+ m2

q

V + 2 V
q

p

2
+ m2

q

where p

2
? =

k2
?

4x(1�x) , p3 =

m

q

(x�1/2)p
x(1�x)

, and V is the effective potential in the instant-form

• For small quark masses a linear instant-form potential V implies a harmonic front-form potential U

and thus linear Regge trajectories

[A. P. Trawiński, S. D. Glazek, S. J. Brodsky, GdT, H. G. Dosch, arXiv: 1403.5651]

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 19

Connection to the Linear Instant-Form Potential

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb
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Fundamental Hadronic Features of the Proton

• Partition of the Proton’s Mass: Potential vs. Kinetic Contributions

• Color Confinement

• Role of Quark Orbital Angular Momentum in the Proton

• Quark-Diquark Structure

• Quark Mass Contribution

• Baryonic Regge Trajectory

• Mesonic Supersymmetric Partners

• Proton Light-Front Wavefunctions and Dynamical Observables

• Form Factors, Distribution Amplitudes, Structure Functions

• Non-Perturbative - Perturbative QCD Transition

• Dimensional Transmutation: 

Speakers

• Hadron Mass Decomposition

Stan Brodsky (SLAC)
Xiandong Ji (Maryland)
Dima Kharzeev (Stony Brook & BNL)
Keh-Fei Liu (University of  Kentucky)
David Richards (JLab)
Craig Roberts (ANL)
Martin Savage (University of  Washington)
Stepan Stepanyan (JLab)
George Sterman (Stony Brook)

Workshop Topics
• Hadron Mass Calculation:  

Lattice QCD and Other Methods

Quark kinetic and 
potential energy

Quark masses

Gluon kinetic and 
potential energy

Trace anomaly

Local Organizers
Zein-Eddine Meziani (Temple U.)
Jianwei Qiu (Brookhaven National Lab)

Moderator 
Alfred Mueller (Columbia)

Hq =

∫
d3xψ†(−iD · α)ψ

Hm =

∫
d3xψ̄mψ

Hg =

∫
d3x

1

2
(E2 +B2)

Ha =

∫
d3x

9αs

16π
(E2 −B2)

Mp = 2meff
u +meff

d HQCD = Hq +Hm +Hg +Ha

Philadelphia, Pennsylvania

The Proton Mass
At the heart of most visible matter.
Temple University, March 28-29, 2016

Mp/⇤MS



Future Directions
• Hadronization at the Amplitude Level: LFWFs 

• Running Coupling at all Q2 

• Factorization Scale for ERBL, DGLAP evolution: Q0 

• Calculate Sivers Effect including FSI and ISI 

• Eliminate renormalizations scale ambiguity: PMC 

• Compute Tetraquark Spectroscopy:  Sequential Clusters 

• Update SU(6) spin-flavor symmetry 

• Heavy Quark States:  Supersymmetry, not conformal 

• Compute higher Fock states; e.g. Intrinsic Heavy Quarks 

• Nuclear States — Hidden Color 

• Basis LF Quantization 

de Tèramond, Dosch, Wu, Vary, sjb

Remarkable  
similarities with  
DSE approach of  

Roberts et al.
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Novel QCD

• Flavor-Dependent Anti-Shadowing

• LF Vacuum and Cosmological Constant: No QCD 
condensates

• Principle of Maximum Conformality (PMC): Eliminate 
renormalization anomaly; scheme independent

• Match Perturbative and Non-Perturbative Domains 

• Hadronization at Amplitude Level

• Intrinsic Heavy Quarks from AdS/QCD: Higgs at high xF

• Ridge from flux tube collisions

• Baryon-to-meson anomaly at high pT
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

No anti-shadowing in deep inelastic neutrino scattering !

Non-Universal -- Quark Specific?
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DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

Elements of the solution: 
(A) Light-Front Quantization: causal, frame-independent vacuum 

(B) New understanding of QCD “Condensates” 
(C) Higgs Light-Front Zero Mode 

Extraordinary conflict between the conventional definition of the vacuum in 
quantum field theory and cosmology
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Light-Front vacuum can simulate empty universe

• Independent of observer frame 

• Causal 

• Lowest invariant mass state M= 0. 

• Trivial up to k+=0 zero modes-- already normal-ordering 

• Higgs theory consistent with trivial LF vacuum (Srivastava, 
sjb) 

• QCD and AdS/QCD: “In-hadron”condensates (Maris, Tandy 
Roberts)  -- GMOR satisfied. 

• QED vacuum; no loops 

• Zero cosmological constant from QED, QCD, EW

Shrock, Tandy, Roberts, sjb



Goals
• Test QCD to maximum precision at the 

LHC 

• Maximize sensitivity to new physics 

• High precision determination of 
fundamental parameters 

• Determine renormalizations scales 
without ambiguity 

• Eliminate scheme dependence

Predictions for physical observables cannot depend on theoretical 
conventions such as the renormalization scheme



• Renormalization scale “unphysical”:  No optimal physical scale

• Can ignore possibility of multiple physical scales

• Accuracy of PQCD prediction can be judged by taking arbitrary 
guess                 with an arbitrary range  

• Factorization scale should be taken equal to renormalization 
scale

Myths concerning scale setting

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

⇤H(x,✏k�, �i)

pH

x,✏k�

These assumptions are untrue in QED  
and thus they cannot be true for QCD

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

⇤H(x,✏k�, �i)

pH

x,✏k�

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

⇤H(x,✏k�, �i)

pH

x,✏k�

Clearly heuristic. Wrong in QED. Scheme dependent!



Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

Gell-Mann--Low Effective Charge



• No renormalization scale ambiguity!   

• Two separate physical scales: t, u = photon virtuality   

• Gauge Invariant.  Dressed photon propagator 

• Sums all vacuum polarization, non-zero beta terms into running 
coupling.   This is the purpose of the running coupling! 

• If one chooses a different initial scale, one must sum an infinite number 
of graphs -- but always recover same result!   

• Number of active leptons correctly set  

• Analytic: reproduces correct behavior at lepton mass thresholds 

• No renormalization scale ambiguity!    

Electron-Electron Scattering in QED

t u



9th Summer School in Theoretical Physics, Chongqing, Matin Mojaza

Lessons from QED
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Setting the Renormalization Scale in QCD:
The Principle of Maximum Conformality

Stanley J. Brodsky1, 2 and Leonardo Di Giustino1

1SLAC National Accelerator Laboratory
Stanford University, Stanford, California 94309, USA

2CP3-Origins, University of Southern Denmark
Campusvej 55, DK-5230 Odense M, Denmark

A key problem in making precise perturbative QCD predictions is the uncertainty in determining
the renormalization scale µ of the running coupling αs(µ

2). The purpose of the running coupling in
any gauge theory is to sum all terms involving the β function; in fact, when the renormalization scale
is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising from renormaliza-
tion are summed into the running coupling. The remaining terms in the perturbative series are then
identical to that of a conformal theory; i.e., the corresponding theory with β = 0. The resulting
scale-fixed predictions using the “principle of maximum conformality” (PMC) are independent of
the choice of renormalization scheme – a key requirement of renormalization group invariance. The
results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations
between observables, and the scale-setting method used in lattice gauge theory. The number of
active flavors nf in the QCD β function is also correctly determined. We discuss several methods
for determining the PMC scale for QCD processes. We show that a single global PMC scale, valid
at leading order, can be derived from basic properties of the perturbative QCD cross section. The
elimination of the renormalization scale ambiguity and the scheme dependence using the PMC will
not only increase the precision of QCD tests, but it will also increase the sensitivity of collider
experiments to new physics beyond the Standard Model.

PACS numbers: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

A key difficulty in making precise perturbative QCD predictions is the uncertainty in determining the renormaliza-
tion scale µ of the running coupling αs(µ2). It is common practice to simply guess a physical scale µ = Q of order
of a typical momentum transfer Q in the process, and then vary the scale over a range Q/2 and 2Q. This procedure
is clearly problematic since the resulting fixed-order pQCD prediction will depend on the choice of renormalization
scheme; it can even predict negative QCD cross sections at next-to-leading-order [1].
The purpose of the running coupling in any gauge theory is to sum all terms involving the β function; in fact,

when the renormalization scale µ is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent “renormalon” series of order
αn
s β

nn! does not appear in the conformal series. Thus as in quantum electrodynamics, the renormalization scale µ is
determined unambiguously by the “Principle of Maximal Conformality (PMC)”. This is also the principle underlying
BLM scale setting [2]
It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-

Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)
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A key problem in making precise perturbative QCD predictions is the uncertainty in determining
the renormalization scale µ of the running coupling αs(µ

2). The purpose of the running coupling in
any gauge theory is to sum all terms involving the β function; in fact, when the renormalization scale
is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising from renormaliza-
tion are summed into the running coupling. The remaining terms in the perturbative series are then
identical to that of a conformal theory; i.e., the corresponding theory with β = 0. The resulting
scale-fixed predictions using the “principle of maximum conformality” (PMC) are independent of
the choice of renormalization scheme – a key requirement of renormalization group invariance. The
results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations
between observables, and the scale-setting method used in lattice gauge theory. The number of
active flavors nf in the QCD β function is also correctly determined. We discuss several methods
for determining the PMC scale for QCD processes. We show that a single global PMC scale, valid
at leading order, can be derived from basic properties of the perturbative QCD cross section. The
elimination of the renormalization scale ambiguity and the scheme dependence using the PMC will
not only increase the precision of QCD tests, but it will also increase the sensitivity of collider
experiments to new physics beyond the Standard Model.

PACS numbers: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

A key difficulty in making precise perturbative QCD predictions is the uncertainty in determining the renormaliza-
tion scale µ of the running coupling αs(µ2). It is common practice to simply guess a physical scale µ = Q of order
of a typical momentum transfer Q in the process, and then vary the scale over a range Q/2 and 2Q. This procedure
is clearly problematic since the resulting fixed-order pQCD prediction will depend on the choice of renormalization
scheme; it can even predict negative QCD cross sections at next-to-leading-order [1].
The purpose of the running coupling in any gauge theory is to sum all terms involving the β function; in fact,

when the renormalization scale µ is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent “renormalon” series of order
αn
s β

nn! does not appear in the conformal series. Thus as in quantum electrodynamics, the renormalization scale µ is
determined unambiguously by the “Principle of Maximal Conformality (PMC)”. This is also the principle underlying
BLM scale setting [2]
It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-

Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)

In the (physical) Gell Mann-Low scheme, the momentum scale of the running 
coupling is the virtuality of the exchanged photon; independent of initial scale.

For any other scale choice an infinite set of diagrams must be taken into 
account to obtain the correct result!

In any other scheme, the correct scale displacement must be used

2

sums all vacuum polarization contributions to the dressed photon propagator, both proper and improper. (Here
Π(t) = Π(t, 0) is the sum of proper vacuum polarization insertions, subtracted at t = 0). Formally, one can choose
any initial renormalization scale µ2

0 = t0, since the final result when summed to all orders will be independent
of t0. This is the invariance principle used to derive renormalization group results such as the Callan-Symanzik
equations [4, 5]. However, the formal invariance of physical results under changes in t0 does not imply that there is no
optimal scale. In fact, as seen in QED, the scale choice µ2 = q2, the photon virtuality, immediately sums all vacuum
polarization contributions to all orders exactly in the conventional Gell-Mann-Low scheme. With any other choice of
scale, one will recover the same result, but only after summing an infinite number of vacuum polarization corrections.
Thus, although the initial choice of renormalization scale t0 is arbitrary, the final scale t which sums the vacuum

polarization corrections is unique and unambiguous. The resulting perturbative series is identical to the conformal
series with zero β-function. In the case of muonic atoms, the modified muon-nucleus Coulomb potential is precisely
−Zα(−q⃗ 2)/q⃗ 2; i.e., µ2 = −q⃗2. Again, the renormalization scale is unique.
One can employ other renormalization schemes in QED, such as the MS scheme, but the physical result will be

the same once one allows for the relative displacement of the scales of each scheme. For example, one can start with
the result in the MS scheme for spacelike argument q2 = −Q2, for the standard one-loop charged lepton pair vacuum
polarization contribution to the photon propagator using dimensional regularization:
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αMS(e
−5/3q2) = αGM−L(q

2). (5)

The e−5/3 displacement of renormalization scales between the MS and Gell-Mann–Low schemes is a result of the
convention [6] which was chosen to define the minimal dimensional regularization scheme. One can use another
definition of the renormalization scheme, but the final physical prediction cannot depend on the convention. This
invariance under choice of scheme is a consequence of the transitivity property of the renormalization group [3, 7–9].
The same principle underlying renormalization scale-setting in QED must also hold in QCD since the nf terms

in the QCD β function have the same role as the lepton Nℓ vacuum polarization contributions in QED. QCD and
QED share the same Yang-Mills Lagrangian. In fact, one can show [10] that QCD analytically continues as a

function of NC to Abelian theory when NC → 0 at fixed α = CFαs with CF = N2
C−1
2NC

. For example, at lowest order
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3nf at NC = 0. Thus the same scale-setting procedure must be applicable to all

renormalizable gauge theories.
Thus there is a close correspondence between the QCD renormalization scale and that of the analogous QED process.

For example, in the case of e+e− annihilation to three jets, the PMC/BLM scale is set by the gluon jet virtuality, just
as in the corresponding QED reaction. The specific argument of the running coupling depends on the renormalization
scheme because of their intrinsic definitions; however, the actual numerical prediction is scheme-independent.
The basic procedure for PMC/BLM scale setting is to shift the renormalization scale so that all terms involving

the β function are absorbed into the running coupling. The remaining series is then identical with a conformal theory
with β = 0. Thus, an important feature of the PMC is that its QCD predictions are independent of the choice of
renormalization scheme. The PMC procedure also agrees with QED in the NC → 0 limit.
The determination of the PMC-scale for exclusive processes is often straightforward. For example, consider the

process e+e− → cc̄ → cc̄g∗ → cc̄bb̄, where all the flavors and momenta of the final-state quarks are identified. The nf

terms at NLO come from the quark loop in the gluon propagator. Thus the PMC scale for the differential cross section
in the MS scheme is given simply by the MS scheme displacement of the gluon virtuality: µ2

PMC = e−5/3(pb + pb̄)
2.

In practice, one can identify the PMC/BLM scale for QCD by varying the initial renormalization scale µ2
0 to identify

all of the β-dependent nonconformal contributions. At lowest order β0 = 1
4π (11/3NC − 2/3nf). Thus at NLO one can

simply use the dependence on the number of flavors nf which arises from the quark loops associated with ultraviolet
renormalization as a marker for β0.
In QCD, the nf terms also arise from the renormalization of the three-gluon and four-gluon vertices as well as from

gluon wavefunction renormalization.
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The Running Coupling in QED 

- Vertex- and wavefunction renormalization cancel exactly in QED due to the 
Ward-Takahashi identity - the running coupling is physical!

- Independent of the initial renormalization scale

- Obeys renormalization group properties;
renormalization scheme- and scale-invariance, transitivity, etc...

- The argument of the running coupling is the ‘final scale’ that resums all non-
conformal terms; a function of scheme and renormalization scale

{ci}

a(τ, {ci})

τ

A

B

C

D

E F

- Resummed perturbative QED = dressed 
skeleton expansion; 

- the perturbative coefficients are those of the 
would-be conformal theory

- Let’s give this lesson a name so we don’t forget:
The Principal of Maximum Conformality

S.J. Brodsky, X.-G. Wu; Phys.Rev. D86 (2012) 054018, [arxiv:1208.0700]
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On the elimination of scale ambiguities in perturbative quantum chromodynamics

Stanley J. Brodsky
Institute for Advanced Study, Princeton, New Jersey 08540

and Stanford Linear Accelerator Center, Stanford Unioersity, Stanford, California 94305*

G. Peter Lepage
Institute for Aduanced Study, Princeton, New Jersey 08540

and Laboratory ofNuclear Studies, Cornell Unioersity, Ithaca, New York I4853*

Paul B.Mackenzie
Fermilab, Batavia, Illinois 6D51D
(Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative
analyses in quantum chromodynamics (QCD) and other gauge theories. For aphelian theories the
method reduces to the standard criterion that only vacuum-polarization insertions contribute to the
effective coupling constant. Given a scheme, our procedure automatically determines the coupling-
constant scale appropriate to a particular process. This leads to a new criterion for the convergence
of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and
find that perturbation theory converges well for all processes other than the gluonic width of the Y.
Our analysis calls into question recent determinations of the QCD coupling constant based upon Y
decay.

I. INTRODUCTION the for orthopositronium is much

Physics Letters B 279 (1992) 352-358 
North-Holland PHYSICS LETTERS B 

On some possible extensions 
of the Brodsky-Lepage-Mackenzie approach 
beyond the next-to-leading order 
G. Grunberg  
Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France 

and 

A.L. Kataev 1 
Randall Laboratory of Physics, University of Michigan. Ann Arbor, M148109-1120, USA 

Received 20 May 1991; revised manuscript received 20 January 1992 

Noting that the choice of  renormalization point advocated by Brodsky, Lepage and Mackenzie ( BLM ) is the flavor independent 
prescription which removes all f-dependence from the next-to-leading order coefficients, we consider the possible generalization 
which requires all higher order coefficients ri to be f-independent constants r,*. We point out that in QCD, setting ri= r,* is always 
possible, but leaves us with an ambiguous prescription. We consider an alternative possibility within the framework of  the BLM 
approach and apply the corresponding prescription to the next-to-next-to-leading approximation of trtot(e+e - ~hadrons)  in QCD. 
The analogous questions and the special features of the BLM and effective charge approaches in QED are also discussed. 

PHYSICAL REVIEW D VOLUME 51, NUMBER 7 1 APRIL 1995

Commensurate scale relations in quantum chromodynamics

Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 9)909

Hung Jung Lu*
Department of Physics, University of Maryland, College Park, Maryland 20742

(Received 4 May 1994)

We use the BLM method to relate perturbatively calculable observables in +CD, including the
annihilation ratio R +, , the heavy quark potential, and radiative corrections to structure function
sum rules. The commensurate scale relations connecting the effective charges for observables A and
B have the forin cry(Qq) = nor(Qg) (1+regis —P + ), where the coefficient rqg~ is independent
of the number of ffavors f contributing to coupling constant renormalization. The ratio of scales
Qz/Qir is unique at leading order and guarantees that the observables A and B pass through new
quark thresholds at the same physical scale. We also show that the commensurate scales satisfy the
renormalization group transitivity rule which ensures that predictions in PQCD are independent of
the choice of an intermediate renormalization scheme C. In particular, scale-Axed predictions can
be made without reference to theoretically constructed renormalization schemes such as MS. +CD
can thus be tested in a new and precise way by checking that the observables track both in their
relative normalization and in their commensurate scale dependence. The generalization of the BLM
procedure to higher order assigns a different renormalization scale for each order in the perturbative
series. The scales are determined by a systematic resummation of running coupling constant effects.
The application of this procedure to relate known physical observables in +CD gives rather simple
results. In particular, we find that up to light-by-light-type corrections all terms involving (s,
and m in the relation between the annihilation ratio R + and the Bjorken sum rule for polarized
electroproduction are automatically absorbed into the renormalization scales. The final series has

Scale setting using the extended renormalization group and the principle of maximum
conformality: The QCD coupling constant at four loops

Stanley J. Brodsky1,* and Xing-Gang Wu1,2,†

1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2Department of Physics, Chongqing University, Chongqing 401331, China

(Received 30 November 2011; published 22 February 2012)

A key problem in making precise perturbative QCD predictions is to set the proper renormalization

scale of the running coupling. The extended renormalization group equations, which express the

invariance of the physical observables under both the renormalization scale- and scheme-parameter

transformations, provide a convenient way for estimating the scale- and scheme-dependence of the

physical process. In this paper, we present a solution for the scale equation of the extended renormal-

ization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/

Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all nonconformal f!ig terms in the perturbative

expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are

independent of the renormalization scheme. The PMC/BLM scales can be fixed order-by-order. As a

useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales

up to next-to-next-to-leading order. An explicit application for determining the scale setting of Reþe"ðQÞ
up to four loops is presented. By using the world average "MS

s ðMZÞ ¼ 0:1184& 0:0007, we obtain the

asymptotic scale for the ’t Hooft scheme associated with the MS scheme, !0tH
MS

¼ 245þ9
"10 MeV, and the

asymptotic scale for the conventional MS scheme, !MS ¼ 213þ19
"8 MeV.
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Review

The renormalization scale-setting problem in QCD
Xing-Gang Wua,⇤, Stanley J. Brodskyb, Matin Mojazab,c

a Department of Physics, Chongqing University, Chongqing 401331, PR China
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Keywords:
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a b s t r a c t

A key problem in making precise perturbative QCD predictions is to set the proper renor-
malization scale of the running coupling. The conventional scale-setting procedure assigns
an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In
fact, this ad hoc procedure gives results which depend on the choice of the renormaliza-
tion scheme, and it is in conflict with the standard scale-setting procedure used in QED.
Predictions for physical results should be independent of the choice of the scheme or other
theoretical conventions. We review current ideas and points of view on how to deal with
the renormalization scale ambiguity and show how to obtain renormalization scheme-
and scale-independent estimates.We begin by introducing the renormalization group (RG)
equation and an extended version, which expresses the invariance of physical observ-
ables under both the renormalization scheme and scale-parameter transformations. The
RG equation provides a convenient way for estimating the scheme- and scale-dependence

Review of past
30 years development

Systematic All-Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD
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We introduce a generalization of the conventional renormalization schemes used in dimensional

regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative

QCD predictions, exposes the general pattern of nonconformal f!ig terms, and reveals a special

degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the

argument of the running coupling order by order in perturbative QCD in a form which can be readily

automatized. The new method satisfies all of the principles of the renormalization group and eliminates an

unnecessary source of systematic error.
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In dim. reg.         poles come in powers of [Bollini & Gambiagi, ‘t Hooft & Veltman, ’72] 1/✏

2

subtracted in addition to the standard subtraction
ln 4⇡ � �E of the MS-scheme. The �-subtraction defines
an infinite set of renormalization schemes which we call
�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.

II. THE �-RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions [25–28]. This requires the following transfor-
mation of the integration measure and introduction of an
arbitrary mass scale µ:

Z

d4p ! µ2✏

Z

d4�2✏p . (1)

Divergences are then separated as 1/✏ poles and can be
absorbed into redefinitions of the couplings. The choice
of subtraction procedure is known as the renormalization

scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ✏ one rescales the the couplings
as well with the mass scale µ in the d = 4� 2✏ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 = ↵0/4⇡ = g2/(4⇡)2 as:

a0 = µ2✏ZaSaS , (2)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The mass scale µ is
now understood as the renormalization scale. The bare
coupling must be independent of the arbitrary scale µ,
thus

µ2 da0
dµ2

= 0. (3)

Using this and the expansions

µ2 daS
dµ2

= �✏aS + �(aS) , (4)

�(a) = �a2
1
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i=0

�ia
i , (5)
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1
X
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i , (6)

it is easily derived that:
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a4 + · · ·

and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2

⇤2
+

1

✏
+ c , (8)

where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.

µ2
�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
exp(�) . (14)

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

In the modified minimal subtraction scheme (MS-bar) one subtracts together 
with the pole a constant [Bardeen, Buras, Duke, Muta (1978) on DIS results]:  
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ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:
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1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

A finite subtraction from infinity is arbitrary. Let’s make use of this!

This corresponds to a shift in the scale: 

µ2
MS

= µ2
exp(ln 4⇡ � �E)

µ2
� = µ2

MS
exp(��) = µ2

exp(ln 4⇡ � �E � �)

Subtract an arbitrary constant and keep it in your calculation:      -scheme

2

subtracted in addition to the standard subtraction
ln 4⇡ � �E of the MS-scheme. The �-subtraction defines
an infinite set of renormalization schemes which we call
�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.

II. THE �-RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions [25–28]. This requires the following transfor-
mation of the integration measure and introduction of an
arbitrary mass scale µ:

Z

d4p ! µ2✏

Z

d4�2✏p . (1)

Divergences are then separated as 1/✏ poles and can be
absorbed into redefinitions of the couplings. The choice
of subtraction procedure is known as the renormalization

scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ✏ one rescales the the couplings
as well with the mass scale µ in the d = 4� 2✏ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 = ↵0/4⇡ = g2/(4⇡)2 as:

a0 = µ2✏ZaSaS , (2)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The mass scale µ is
now understood as the renormalization scale. The bare
coupling must be independent of the arbitrary scale µ,
thus

µ2 da0
dµ2

= 0. (3)

Using this and the expansions

µ2 daS
dµ2

= �✏aS + �(aS) , (4)

�(a) = �a2
1
X

i=0

�ia
i , (5)

Za = 1 +
1
X

i=1

zia
i , (6)

it is easily derived that:

Za =1� �0

✏
a+

✓

�2
0

✏2
� �1

2✏

◆

a2 (7)

�
✓

�3
0

✏3
� 7

6

�0�1

✏2
+

�2

3✏

◆

a3

+

✓

�4
0

✏4
� 23�1�

2
0

12✏3
+

5�2�0

6✏2
+

3�2
1

8✏2
� �3

4✏

◆

a4 + · · ·

and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2

⇤2
+

1

✏
+ c , (8)

where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.

µ2
�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
exp(�) . (14)

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

R�

�-Renormalization Scheme ( R� scheme)

M. Mojaza, Xing-Gang Wu, sjb
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Exposing the Renormalization Scheme Dependence
Observable in the      -scheme:

⇢�(Q
2) =r0 + r1a(µ) + [r2 + �0r1�]a(µ)

2 + [r3 + �1r1� + 2�0r2� + �2
0r1�

2]a(µ)3 + · · ·

R0 = MS , Rln 4⇡��E = MS µ2
= µ2

MS
exp(ln 4⇡ � �E) , µ2

�2 = µ2
�1 exp(�2 � �1)

Note the divergent ‘renormalon series’ n!�n↵n
s

⇢�(Q
2) =r0 + r1a1(µ1) + (r2 + �0r1�1)a2(µ2)

2 + [r3 + �1r1�1 + 2�0r2�2 + �2
0r1�

2
1 ]a3(µ3)

3

The �pka
n
-term indicates the term associated to a diagram with 1/✏n�k

di-

vergence for any p. Grouping the di↵erent �k-terms, one recovers in the Nc ! 0

Abelian limit the dressed skeleton expansion.

R�

Exercise: 
Use the scale displacement relation to derive these expressions

Renormalization Scheme Equation
d⇢

d�
= ��(a)

d⇢

da
!
= 0 �! PMC

M. Mojaza, Xing-Gang Wu, sjb
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Special Degeneracy in PQCD

There is nothing special about a particular value for � , thus for any �

⇢(Q2) =r0,0 + r1,0a(Q) + [r2,0 + �0r2,1]a(Q)2 + [r3,0 + �1r2,1 + 2�0r3,1 + �2
0r3,2]a(Q)3

+ [r4,0 + �2r2,1 + 2�1r3,1 +
5

2
�1�0r3,2 + 3�0r4,1 + 3�2

0r4,2 + �3
0r4,3]a(Q)4

According to the principal of maximum conformality we must set the scales 
such to absorb all ‘renormalon-terms’, i.e. non-conformal terms

⇢(Q2) = r0,0 + r1,0a(Q) + (�0a(Q)2 + �1a(Q)3 + �2a(Q)4 + · · · )r2,1

+ (�2
0a(Q)3 +

5

2
�1�0a(Q)4 + · · · )r3,2 + (�3

0 + · · · )r4,3

+ r2,0a(Q)2 + 2a(Q)(�0a(Q)2 + �1a(Q)3 + · · · )r3,1
+ · · ·

r2,0a(Q2)
2 = r2,0a(Q)2 � 2a(Q)�(a)r3,1 + · · ·

r1,0a(Q1) = r1,0a(Q)� �(a)r2,1 +
1

2
�(a)

@�

@a
r3,2 + · · ·+ (�1)n

n!

dn�1�

(d lnµ2)n�1
rn+1,n
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MM: I now show how to set the PMC scales - given Eq.(19)
is correct, this is the exact way to do it, di↵erently from the
approximative way we considered and discussed earlier. The
scales naturally depend on the coupling through the beta func-
tion.

Let’s take a look back at Eq. (19). It is easy to see
that we can resum all ri,1 terms, which come with a lin-
ear factor of �j , to all orders by setting the scales (for
simplicity, we treat the higher order �j terms later):

r
1,0a(Q1

) = r
1,0a(Q)� �(a)r

2,1

r
2,0a(Q2

)2 = r
2,0a(Q)2 � 2a(Q)�(a)r

3,1

r
3,0a(Q2

)3 = r
3,0a(Q)3 � 3a(Q)2�(a)r

4,1

...

rk,0a(Qk)
k = rk,0a(Q)2 � k a(Q)k�1�(a)rk+1,1 (21)

From the scale displacement equation (14) for a it is
straightforward to see that:

a(Qk)
k = a(Q)k + ka(Q)k�1�(a) ln

Q2

k

Q2

+ (22)

+


k

2
�
@�

@a
a(Q)k�1 + k(k � 1)a(Q)k�2�(a)2

�
ln2

Q2

k

Q2

+ · · ·

It follows that to absorb all linear �j terms, the scales

Qk must satisfy:

�rk+1,1

rk,0
= ln

Q2

k

Q2

+


1

2

@�

@a
+ (k � 1)

�

a

�
ln2

Q2

k

Q2

+ · · ·
(23)

This leads to the self-consistency equation for Qk:

ln
Q2

k

Q2

=
�rk+1

/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i
ln

Q2
k

Q2 + · · ·
(24)

To leading order (LO) we have:

ln
Q2

k,LO

Q2

= �rk+1

rk,0
. (25)

This resums all linear �j terms, but introduces higher
order �j terms as well beyond the order ak+1. Say, we
are computing an observable to order an. The scales Qk

must resum all �jrk+1,1 terms without introducing higher
order ones up to order an. This means that Qk must be
computed to Nn�(k+1)LO. Let us explicitly perform the
resummation up to a4, that is, up to NNLO. The general
expression for the NLO scale reads:

ln
Q2

k,NLO

Q2

=
�rk+1

/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i ⇣
� rk+1

rk,0

⌘ . (26)

To find the NNLO scale, we first write the self-
consistency equation:

ln
Q2

k

Q2

=
�rk+1,1/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i
ln

Q2
k

Q2 +


1

3!

✓
� @2�

@a2 +
⇣

@�
@a

⌘
2

◆
+ k�1

2

�
a

@�
@a + (k � 1)(k � 2)�

2

a2

�
ln2

Q2
k

Q2 + · · ·
(27)

Then we expand the NLO scale to first order

ln
Q2

k,NLO

Q2

= �rk+1,1

rk,0

✓
1 +


1

2

@�

@a
+ (k � 1)

�

a

�
rk+1,1

rk,0
+ · · ·

◆
, (28)

and replace ln Q2
k

Q2 in the denominator with this NLO expansion, while the ln2 Q2
k

Q2 is replaced with the LO expansion.
We the get:

ln
Q2

k,NNLO

Q2

=
�rk+1,1/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i ⇣
� rk+1,1

rk,0

⌘
+


1

3!

✓
� @2�

@a2 � 1

2

⇣
@�
@a

⌘
2

◆
� k�1

2

�
a

@�
@a � (k � 1)�

2

a2

�⇣
rk+1,1

rk,0

⌘
2

. (29)

So far, we kept k general and thus these expressions
for Qk,LO, Qk,NLO and Qk,NNLO hold for a perturbative
expansion to any order. In the particular case, where we
are considering ⇢ to order a4, we have that:

ln
Q2

1

Q2

=
�r

2,1/r1,0

1� 1

2

@�
@a

r2,1
r1,0

+ 1

3!


� @2�

@a2 � 1

2

⇣
@�
@a

⌘
2

�⇣
r2,1
r1,0

⌘
2

.

(30)

3

a value for the arbitrary initial scale µ�, or correspond-
ingly fixing the arbitrary scheme, R�. The � dependency
of the coe�cients is not small and since this is an implicit
µ� dependency it is simply wrong to state that the coef-
ficients only depend logarithmically on the scale. This is
intimately connected to the renormalon problem.

X-GW: Here, I have cut o↵ unimportant discussions.

MM: Ok.

Now, it is obvious that in a conformal theory, where
{�i} = {0}, the � dependency vanishes in Eq.(15). That
is, the result is the same in anyR�. Therefore, by absorb-
ing all {�i} dependency into a redefinition of the scales
at each order, we obtain a final result independent of the
initial choice of scale and scheme. Using R� we can make
this statement even more rigorous. From the explicit ex-
pression in Eq. (15) it is easy to confirm that

d⇢�(s)

d�
= �(a)

d⇢�
da

. (17)

We see that to obtain a scheme-invariant and confor-
mal result, we must set the scales such that all {�i}-
functions equal to zero, which further leads to

�(a) = 0 . (18)

Notice that this holds at any order in perturbation the-
ory and is a theoretical requirement, di↵erent from the
physical fact that the all-orders expression for ⇢ must be
renormalization scale and scheme invariant. It should be
emphasized that this is not a fixed point expression for
a but is a fully conformal requirement, that is, the beta
function vanishes identically. This proves the principle

of maximal conformality (PMC) at any order.
X-GW: I think the above demonstration is not complete

or misleading. It is right that if the right side of Eq.(17) is
satisfied by a proper PMC procedure, then the left side can be
satisfied naturally.

MM: This is all I had in mind, in other words Eq.(18) is
the ’proof-of-concept’ of the PMC scale setting - as you say, it
demonstrates that if one sets the scale such that all {�i} are
absorbed, the final result is renormalization scheme invariant
and this is the principal of maximal conformality.

X-GW: However if the left side of Eq.(18) is satisfied we
can only obtain �(a) = 0, but we can not obtain the conclusion
that all the terms involving {�i}-functions are equal to zero,
that is we can not eliminate all {�i}-series. It only happens
when all {�i}-terms are combined into functions of �(a) that
is only a lottery.

MM: There are two ways of obtaining �(a) = 0: either
{�i} = 0 or a(µ) = a⇤, where a⇤ is a constant - the fixed point
value, �(a⇤

) = 0. As I emphasize above, the latter is not what
we are considering. Let me elaborate. The fixed point theory
is a conformal field theory (CFT) - the coupling does not run.
In a CFT it does not make sense to set the scale, since the
theory is scale-invariant (a = a⇤ on all scales). Moreover, the
CFT is not asymptotically free, so we cannot even consider
observables computed in perturbation theory - it has no well-
defined perturbative limit. So, to me it does not make sense
to consider nor discuss this case in the context of the scale

setting problem. Therefore, �(a) = 0 can only mean {�i} = 0

in the context we are considering.
In fact, by setting � = 0 directly, we must demonstrate the

{�i}-terms in the coe�cient functions ri are eliminated simul-
taneously. This point has also been discussed in my previous
letters, but it has not been discussed so far.

MM: I do not understand this last comment?

III. SETTING THE PMC SCALES

The expression in Eq. (15) explicitly shows the pattern
of �i terms appearing in the coe�cients at each order.
That is, if we forget about any reference scheme, the
expression for ⇢ in any scheme will take the form:

⇢(Q2) =r
0,0 + r

1,0a(Q) + [r
2,0 + �

0

r
2,1]a(Q)2

+ [r
3,0 + �

1

r
2,1 + 2�

0

r
3,1 + �2

0

r
3,2]a(Q)3

+ [r
4,0 + �

2

r
2,1 + 2�

1

r
3,1 +

5

2
�
1

�
0

r
3,2 + 3�

0

r
4,1

+ 3�2

0

r
4,2 + �3

0

r
4,3]a(Q)4 +O(a5) (19)

where ri,0 are the conformal part of the coe�cients.
MM: Note that I in this expression have assumed/inferred

some relations between the coe�cients e.g. the �0a(Q)

2 co-
e�cient and the �1a(Q)

3 are equal etc... It follows from Eq.
(15) and I have checked that it is indeed correct for Re+e�!h.
I think this holds for any observable?
We have as before for simplicity of the expression set

µ = Q, but this is not the final expression. We must
set the scale at each order in such a way to absorb all �i

dependencies into the running coupling. The problem is
now to understand which terms should be absorbed into
which scales. We can use R� to provide the solution. In
deriving Eq. (15) we made an equal scale displacement
of each running coupling. To see from where each � ap-
peared, we put a dummy index on the displacement of
each coupling to track its origin. The result is:

⇢�(Q
2) =r

0

+ r
1

a
1

(Q) + (r
2

� �
0

r
1

�
1

)a
2

(Q)2

+ [r
3

� �
1

r
1

�
1

� 2�
0

r
2

�
2

+ �2

0

r
1

�2
1

]a
3

(Q)3

+ [r
4

� �
2

r
1

�
1

� 2�
1

r
2

�
2

� 3�
0

r
3

�
3

+ 3�2

0

r
2

�2
2

� �3

0

r
1

�3
1

+
5

2
�
1

�
0

r
1

�2
1

]a(Q)4 +O(a5) (20)

This immediately shows us which terms should be ab-
sorbed into which running coupling, e.g. we must resum
all �

1

dependency into a
1

etc.. In the end one can remove
the dummy index on the couplings since they were put
only to display the correct resummation pattern.

MM: I must emphasize here that the BLM procedure is
only and approximation to PMC as can be seen above, i.e.
besides the fact that ri,0 depend explicitly on Nf one can also
now observe that e.g. there is an N2

f term coming from �1�0

at order a4 which must be absorbed into a1 - If I have un-
derstood BLM correctly, at this order you absorb only all N3

f

dependency into a1, right?

General result for an observable in any R� renormalization scheme:

PMC scales thus satisfy

M. Mojaza, Xing-Gang Wu, sjb
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Important Example: Top-Quark FB Asymmetry

Table 5: Total cross-sections (in unit: pb) for the top-quark pair production at the Tevatron
with pp̄-collision energy

p
s = 1.96 TeV. For conventional scale setting, we set the scale

µr ⌘ Q. For PMC scale setting, we set the initial scale µinit
r = Q and then apply the

PMC procedure. Here we take Q = mt = 172.9 GeV and use the MSRT 2004-QED parton
distributions [178] as the PDF.

Conventional scale setting PMC scale setting
LO NLO NNLO total LO NLO NNLO total

(qq̄)-channel 4.890 0.963 0.483 6.336 4.748 1.727 -0.058 6.417
(gg)-channel 0.526 0.440 0.166 1.132 0.524 0.525 0.160 1.208
(gq)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332
(gq̄)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332

sum 5.416 0.985 0.659 7.402 5.272 2.176 0.112 7.559

Figure 16: Dominant cut diagrams for the nf -terms at the ↵4-order of the (qq̄)-channel,
which are responsible for the smaller e↵ective NLO PMC scale µPMC,NLO

r , where the solid
circles stand for the light-quark loops.

• Att̄,HP
FB |O(↵3

s) and App̄,HP
FB |O(↵3

s) stand for the pure QCD asymmetry at the ↵3
s-order under the tt̄-rest

frame and the pp̄ lab frame, respectively.

• Att̄,HP
FB |O(↵2

s↵) and App̄,HP
FB |O(↵2

s↵) stand for the combined QED and weak with the QCD asymmetry
at the ↵2

s↵-order under the tt̄-rest frame and the pp̄ lab frame, respectively.

• Att̄,HP
FB |O(↵2) and App̄,HP

FB |O(↵2) stand for the pure electroweak asymmetry at the ↵2-order under the
tt̄-rest frame and the pp̄ lab frame, respectively.

Total cross-sections for the top-quark pair production at the Tevatron with pp̄-collision energy
p
s =

1.96 TeV and with the same parameters of Ref. [175] are given in Table 5. In the formulas (228,229),

we have defined an e↵ective coupling ↵s

⇣

µPMC,NLO
r

⌘

for the asymmetric part, which is the weighted

average of the QCD coupling for the (qq̄)-channel; i.e. in using the e↵ective coupling ↵s

⇣

µPMC,NLO
r

⌘

,

one obtains the same (qq̄)-channel NLO cross-section as that of ↵s(µPMC,NLO
r )8.

It is noted that the NLO-level asymmetric part for (qq̄)-channel only involves the NLO PMC scale for

the non-Coulomb part, so the e↵ective coupling ↵s

⇣

µPMC,NLO
r

⌘

can be unambiguously determined. We

obtain a smaller e↵ective NLO PMC scale µPMC,e↵ective
r ' exp(�9/10)mt ⇠ 70 GeV, which corresponds

to ↵s

⇣

µPMC,NLO
r

⌘

= 0.1228. It is larger than ↵HP
s (mt) ' 0.098 [174, 175]. This e↵ective NLO PMC

scale is dominated by the non-Coulomb nf -terms at the ↵4
s-order, which are shown in Fig.(16). In these

diagrams, the momentum flow in the virtual gluons possess a large range of virtualities. This e↵ect for

8In principle, one could divide the cross-sections into symmetric and asymmetric components and find PMC scales
for each of them. For this purpose, one needs to identify the nf -terms or the n2

f -terms for both the symmetric and
asymmetric parts at the NNLO level separately.
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Figure 17: Comparison of the PMC prediction with the CDF data [166] for the tt̄-pair
forward-backward asymmetry for the whole phase-space. The Hollik and Pagani’s results
(HP) [175] using conventional scale setting are presented for a comparison. The result for
D0 data [167] shows a similar behavior.

NLO PMC scale µPMC,e↵ective
r can be regarded as a weighted average of these di↵erent momentum flows

in the gluons, which can be softer than the nominal scale, mt. Finally, we obtain

Att̄,PMC
FB ' 12.7% ; App̄,PMC

FB ' 8.39% . (230)

Thus after PMC scale setting, the top-quark asymmetry under the conventional scale setting is in-
creased by ⇠ 42% for both the tt̄-rest frame and the pp̄-laboratory frame. This large improvement is
explicitly shown in Fig.(17), where Hollik and Pagani’s results which are derived under conventional
scale setting [175] are presented for comparison.

Another possible e↵ect from QCD can be the lensing e↵ect of the final state interactions of the t and
t̄ with the beam spectators. The same diagrams causes Sivers single-spin asymmetry and di↵ractive
deep inelastic scattering9.

The CDF collaboration has found that when the tt̄-invariant mass, Mtt̄ > 450 GeV, the top-
quark forward-backward asymmetry Att̄

FB(Mtt̄ > 450 GeV) is about 3.4 standard deviations above
the SM asymmetry prediction under the conventional scale setting [173]. After applying PMC scale

setting, we have �tot,PMC
H1H2!tt̄X(Mtt̄ > 450 GeV) = 2.406 pb and ↵s

⇣

µPMC,NLO
r

⌘

= 0.1460 with µPMC,NLO
r ⇠

exp(�19/10)mt ' 26 GeV. Then, we obtain

Att̄,PMC
FB (Mtt̄ > 450 GeV) ' 35.0% , (231)

which is increased by about 1.7 times of the previous one Att̄,HP
FB (Mtt̄ > 450 GeV) = 12.8% [175]. Our

present prediction is only about 1�-deviation from the CDF data, which is shown in Fig.(18). This
shows that, after PMC scale setting, the discrepancies between the SM estimate and the present CDF
and D0 data are greatly reduced.

6 Summary

Because of the RG invariance (39,40), the predictions for a physical observable must be independent
of the renormalization scheme and the initial scale. The results cannot depend on which scheme the

9We thanks Benjamin von Harling and Yue Zhao for conversions on this possibility.
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Figure 18: The PMC prediction of Att̄
FB(Mtt̄ > 450 GeV) and the corresponding CDF

data [166] for the tt̄-pair forward-backward asymmetry forMtt̄ > 450 GeV. The Hollik and
Pagani’s results (HP) [175] using conventional scale setting are presented for a comparison.

theorist chooses; e.g. MS-scheme, MOM-scheme, etc. Note that the conventional MS-scheme is
somewhat artificial. One can introduce a more general MS-like renormalization scheme, R�-scheme,
by further absorbing an arbitrary constant � into 1/✏ pole, i.e. 1

✏ + ln(4⇡) � �E � �. Physical results
cannot depend on the choice of �.

At a fixed-order the dependence on the renormalization scheme and initial scale choice leads to large
uncertainties for perturbative QCD predictions. The problem is compounded in multi-scale processes.
The conventional scale setting procedure assigns an arbitrary range and an arbitrary systematic error
to fixed-order pQCD predictions. As we have discussed in this review, this ad hoc assignment of the
range and associated systematic error is unnecessary and can be eliminated by a proper scale setting
as the PMC.

The extended RG equations, which includes the dependence on the scheme parameters, provide a
convenient way for estimating both the scheme and scale dependence of the perturbative predictions
for a physical process. It provides a way for the running coupling to run reliably either in scale or in
scheme. With the help of the extended RG equations, we have presented a general demonstration for
the RG invariance. Furthermore, this formalism provides a platform for a reliable error analysis, and it
also provides a precise definition for the QCD asymptotic scale under any renormalization R-scheme,
⇤

0tH�R
QCD , which is defined as the pole of the strong coupling in the ’t Hooft scheme associated with

R-scheme.

Several scale setting methods have been proposed in the literature: FAC, PMS, BLM and PMC.
The FAC (Fastest Apparent Convergence) use the scale to contract the prediction to one term. The
PMS (Principle of Minimum Sensitivity) chooses the scale at the point of minimum variation. The
BLM (Brodsky-Lepage-Mackenzie) and PMC (Principle of Maximum Conformality) procedures shift
all {�i}-terms into the argument of the running coupling. Based on the extended RG equation, we
have discussed the self-consistency conditions for a scale setting method, which include the existence
and uniqueness of the renormalization scale, reflexivity, symmetry, and transitivity. These properties
are natural requirements of RG invariance. We have shown that the FAC and BLM/PMC satisfy
these requirements, whereas the PMS does not. The PMS is designed to be renormalization-scheme
independent; however it violates the symmetry and transitivity properties of the renormalization group,
and does not reproduce the Gell Mann-Low scale for QED observables. In addition, the application
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Conventional Scale Setting: ↵(µ) = ↵MS(µ) and µ = [

1
2Q, 2Q]

Brodsky, Wu, Phys.Rev.Lett. 109, [arXiv:1203.5312]

3

PMC scale setting Conventional scale setting

Q = mt/4 Q = mt Q = 10mt Q = 20mt Q =
√
s µR ≡ mt/2 µR ≡ mt µR ≡ 2mt

Tevatron (1.96 TeV) 7.620(5) 7.626(3) 7.625(5) 7.624(6) 7.628(5) 7.742(5) 7.489(3) 7.199(5)

LHC (7 TeV) 171.6(1) 171.8(1) 171.7(1) 171.7(1) 171.7(1) 168.8(1) 164.6(1) 157.5(1)

LHC (14 TeV) 941.8(8) 941.3(5) 942.0(8) 941.4(8) 942.2(8) 923.8(7) 907.4(4) 870.9(6)

TABLE I. Dependence of the tt̄ production cross-sections (in unit: pb) at the Tevatron and LHC on the initial renormalization
scale µinit

R = Q. Here mt = 172.9 GeV. The number in parenthesis shows the Monte Carlo uncertainty in the last digit.

σ
σ

FIG. 1. Total cross-section σtt̄ for the top quark pair produc-
tion versus top quark mass.

equal to each other within part per mill accuracy 1. For
comparison, we also present the results with conventional
scale setting in Table I. For µR ∈ [mt/2, 2mt], we ob-

tain the usual renormalization scale-uncertainty
(

+3%
−4%

)

.

This shows that the renormalization scale uncertainty is
greatly suppressed and essentially eliminated using PMC
even at the NNLO level. This is consistent with renor-
malization group invariance: there should be no depen-
dence of the prediction for a physical observable on the
choice of the initial renormalization scale.

The PMC predictions for total cross-section σtt̄ are
sensitive to the top quark mass. We present σtt̄ as a
function of mt in Fig.(1). After PMC scale setting, the
value of σtt̄ becomes very close to the central values of the
experimental data [9–12]. By varying mt = 172.9 ± 1.1
GeV [19], we predict

σTevatron,1.96TeV = 7.626+0.265
−0.257 pb (6)

σLHC,7TeV = 171.8+5.8
−5.6 pb (7)

σLHC,14TeV = 941.3+28.4
−26.5 pb (8)
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FIG. 2. Comparison of the PMC prediction with the CDF data [21] for the tt̄-pair forward-backward asymmetry for the whole
phase-space. The left diagram is for Att̄

FB in the tt̄-rest frame, the middle diagram is for App̄
FB in the laboratory frame, and

the right diagram is for Att̄
FB(Mtt̄ > 450 GeV). The Hollik and Pagani’s results (HP) [24] using conventional scale setting are

presented for a comparison. The result for D0 data [22] shows a similar behavior.

1 There is some small residual initial-scale dependence in the PMC scales because of unknown-higher-order {βi}-terms.
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Application of the Principle of Maximum Conformality to the Top Quark
Forward-Backward Asymmetry at the Tevatron

Stanley J. Brodsky1∗ and Xing-Gang Wu1,2†
1 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

2 Department of Physics, Chongqing University, Chongqing 401331, P.R. China
(Dated: June 19, 2012)

The renormalization scale uncertainty can be eliminated by the Principle of Maximum Con-
formality (PMC) in a systematic scheme-independent way. Applying the PMC for the tt̄-pair
hadroproduction at the NNLO level, we have found that the total cross-sections σtt̄ at both the
Tevatron and LHC remain almost unchanged when taking very disparate initial scales µinit

R equal
to mt, 10mt, 20mt and

√
s, which is consistent with renormalization group invariance. As an

important new application, we apply PMC scale setting to study the top quark forward-backward
asymmetry. We observe that the more convergent perturbative series after PMC scale setting leads
to a more accurate top quark forward-backward asymmetry. The resulting PMC prediction on the
asymmetry is also free from the initial renormalization scale-dependence. Because the NLO PMC
scale has a dip behavior for the (qq̄)-channel at small subprocess collision energies, the importance
of this channel to the asymmetry is increased. We observe that the asymmetries Att̄

FB and App̄
FB at

the Tevatron will be increased by 42% in comparison to the previous estimates obtained by using
conventional scale setting; i.e. we obtain Att̄,PMC

FB ≃ 12.5% and App̄,PMC

FB ≃ 8.28%. Moreover, we

obtain Att̄,PMC

FB (Mtt̄ > 450 GeV) ≃ 35.0%. These predictions have a 1σ-deviation from the present
CDF and D0 measurements; the large discrepancies of the top quark forward-backward asymmetry
between the Standard Model estimate and the CDF and D0 data are thus greatly reduced.

PACS numbers: 12.38.Aw, 14.65.Ha, 11.15.Bt, 11.10.Gh

Keywords: PMC, Renormalization Scale, top quark Forward-Backward Asymmetry

I. INTRODUCTION

The top quark is the heaviest known elementary par-
ticle, and it plays a fundamental role in testing the Stan-
dard Model (SM) and the extensions of the SM. Its
production and decay channels are important probes of
new physics, and because of its large coupling to the
Higgs, the top quark production processes provide a sen-
sitive probe of electroweak symmetry breaking. The to-
tal cross-section for the top quark pair production has
been calculated up to NNLO within the MS-scheme in
Refs. [1–20]. The SM estimates, especially those obtained
by using the Principle of Maximum Conformality (PMC)
[17, 18], agree well with the experimental result which has
been measured with a precision ∆σtt̄/σtt̄ ∼ ±7% at the
Tevatron [21, 22] and ∼ ±10% at the LHC [23, 24].

The top quark forward-backward asymmetry which
originates from charge asymmetry physics [25, 26] has
also been studied at the Tevatron and LHC. Two op-
tions for the asymmetry have been used for experimental
analysis; i.e. the tt̄-rest frame asymmetry

Att̄
FB =

σ(ytt̄t > 0)− σ(ytt̄t < 0)

σ(ytt̄t > 0) + σ(ytt̄t < 0)
(1)

∗ email:sjbth@slac.stanford.edu
† email:wuxg@cqu.edu.cn

and the pp̄-laboratory frame asymmetry

App̄
FB =

σ(ypp̄t > 0)− σ(ypp̄t < 0)

σ(ypp̄t > 0) + σ(ypp̄t < 0)
, (2)

where ytt̄t is the top quark rapidity in the tt̄-rest frame
and ypp̄t is the top quark rapidity in the pp̄-laboratory
frame (or the pp̄ center-of-mass frame). The CDF and
D0 collaborations have found comparable values in the
tt̄-rest frame: Att̄,CDF

FB = (15.8± 7.5)% [27] and Att̄,D0
FB =

(19.6 ± 6.5)% [28], where the uncertainties are derived
from a combination of statistical and systematic errors.
The asymmetry in the pp̄-laboratory frame measured by
CDF is App̄,CDF

FB = (15.0 ± 5.5)% [27]. The CDF col-
laboration has also measured the dependence of Att̄

FB
with respect to the tt̄-invariant mass Mtt̄: the asymme-
try increases with Mtt̄, and Att̄

FB(Mtt̄ > 450 GeV) =
(47.5± 11.4)% [27].
These measured top quark forward-backward asymme-

tries are much larger than the usual SM estimates. For
example, the NLO QCD contributions to the asymmet-
ric tt̄-production using conventional scale setting yield
Att̄

FB ≃ 7% and App̄
FB ≃ 5% (see e.g. [29]), which are

about 2σ-deviation from the above measurements. For
the case of Mtt̄ > 450 GeV, using the MCFM pro-
gram [30], one obtains Att̄

FB(Mtt̄ > 450 GeV) ∼ 8.8%
which is about 3.4σ-deviation from the data. These dis-
crepancies have aroused great interest because of the
possibility for probing new physics beyond the Standard
Model.

HP: Hollik, Pagani, Phys.Rev. D84(2011)

Improving pQCD precision important for exposing new physics correctly!

Conventional ‘uncertainty estimate’ can be misleading 
(see also Blumlein & van Neerven, Phys.Lett. B450, 417[1999]) 

µr 6= µf (!)

5

(a) (b) (c)

FIG. 3. Representative cut diagrams contributing to the
QCD-QED interference term O(α2

sα). The wave lines stand
for the photon.

asymmetry at the so-called NNLO level:

AFB =
αs

D0

[

N1 − αs

(

D1N1

D0

)

+ α2
s

(

D2
1N1

D2
0

)]

.

Furthermore, it is natural to assume that those
higher-order terms Ni andDi with i > 2 after PMC
scale setting will also give negligible contribution 4;
the above asymmetry can thus be resummed to a
more convenient form:

AFB =
α3
sN1

α2
sD0 + α3

sD1
. (4)

• As argued by Refs. [26, 31, 32], the electromag-
netic and weak interaction will provide an extra
∼ 20% increment for the asymmetry. This shows
that the electromagnetic contribution provides a
non-negligible fraction of the QCD-based antisym-
metric cross-section with the same overall sign. The
asymmetry to be calculated thus changes to

AFB =
α3
sN1 + α2

sαÑ1 + α2Ñ0

α2
sD0 + α3

sD1
. (5)

Representative diagrams contributing to the QCD-
QED interference term Ñ1 at the order O(α2

sα) are
shown in Fig.(3). The weak contributions to the
asymmetry are obtained by changing the photon
propagator to be a Z0-propagator. The pure elec-
troweak antisymmetric O(α2) term Ñ0 arises from
|Mqq̄→γ→tt̄ +Mqq̄→Z0→tt̄|2 [32].

Based on the above considerations, the top quark
forward-backward asymmetry after PMC scale setting
can be written as

Att̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄X(µPMC

R )

[

σ(qq̄)
asy

(

µPMC
R ; ytt̄t > 0

)

−σ(qq̄)
asy

(

µPMC
R ; ytt̄t < 0

)]

(6)

4 There may still be large higher-order corrections not associated
with renormalization. The nf -dependent but renormalization
scale independent terms should not be absorbed into the coupling
constant. An important example in QED case is the electron-
loop light-by-light contribution to the sixth-order muon anoma-
lous moment which is of order (α/π)3 ln(mµ/me) [57].

FIG. 4. PMC scales for the dominant asymmetry (qq̄)-channel
versus the sub-process collision energy

√
s for the top quark

pair production up to 1.96 TeV, where we have set the initial
renormalization scale µinit

r = mt = 172.9 GeV.

and

App̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄X(µPMC

R )

[

σ(qq̄)
asy

(

µPMC
R ; ypp̄t > 0

)

−σ(qq̄)
asy

(

µPMC
R ; ypp̄t < 0

)

]

,(7)

where σtot
H1H2→tt̄X is total hadronic cross-section up to

NLO. The symbol σ(qq̄)
asy stands for the asymmetric cross-

section of the (qq̄)-channel which includes the above men-
tioned O(α3

s), O(α2
sα) and O(α2) terms. Here µPMC

R
stands for the PMC scale. In the denominator for the
total cross-section up to NLO, for each production chan-
nel, we need to introduce two LO PMC scales which are
for the Coulomb part and non-Coulomb part accordingly,
and one NLO PMC scale for the non-Coulomb part 5.
In the numerator, we only need the NLO PMC scale
µPMC,NLO
R for the (qq̄)-channel, since it is the only asym-

metric component. Detailed processes for deriving these
PMC scales can be found in Ref.[18], which are obtained
by using the cross-sections calculated within the MS-
scheme. We present the behaviors of the PMC scales
for the dominant asymmetric (qq̄)-channel in Fig.(4).
Note that if the cross-sections are calculated within
any other renormalization scheme, some proper scale-
displacements to the present PMC scales will be auto-
matically set by PMC scale setting so as to ensure the
scheme-independence of the final estimation.
It is interesting to observe that there is a dip for the

NLO scale µPMC,NLO
R of the (qq̄)-channel when

√
s ≃

[
√
2 exp(5/6)]mt ∼ 563 GeV, which is caused by the cor-

5 Since the channels (ij) = {(qq̄), (gg), (gq), (gq̄)} are distinct and
non-interfering, their PMC scales should be set separately [18].
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Figure 11. Predictions for the mtt̄ cumulative asymmetry: pure QCD at NLO and NNLO (as
derived in this work), NLO prediction of Ref. [11] including EW corrections, as well as the PMC
scale-setting prediction of Ref. [11].

range of mtt̄ used for the calculation of the NNLO result, fixed and dynamic scales would lead

to consistent predictions within scale errors (see also recent discussion for the LHC [92]).

We conclude that the two scale-setting approaches produce very di↵erent predictions for

the mtt̄ cumulative ÂFB and it should be easy to distinguish between the two with data,

especially in the region around mtt̄ ⇠ 500GeV. We would also like to point out that the

NNLO prediction based on conventional scale-setting with µR = mt exhibits the “increasing-

decreasing” behaviour pointed out in Ref. [11], albeit much less pronounced than in the PMC

scale-setting approach.

5 Comparisons between di↵erent pdf sets

An alternative way of assessing the pdf dependence in theory predictions is to compare calcu-

lations with di↵erent pdf sets. In this section we compare NNLO QCD predictions based on

four state-of-the-art pdf sets: CT10, HERA 1.5, MSTW2008 and NNPDF 2.3. We compare

the central pdf members for central scale choice µF = µR = mt.
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Features of BLM/PMC

• Predictions are scheme-independent

• Matches conformal series

• Commensurate Scale Relations between 
observables: Generalized Crewther Relation   
(Kataev, Lu, Rathsman, sjb)

• No n! Renormalon growth

• New scale at each order; nF determined at each order

• Multiple Physical Scales Incorporated

• Rigorous: Satisfies all Renormalization Group 
Principles

• Realistic Estimate of Higher-Order Terms

• Eliminates unnecessary theory error
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range of mtt̄ used for the calculation of the NNLO result, fixed and dynamic scales would lead

to consistent predictions within scale errors (see also recent discussion for the LHC [92]).

We conclude that the two scale-setting approaches produce very di↵erent predictions for

the mtt̄ cumulative ÂFB and it should be easy to distinguish between the two with data,

especially in the region around mtt̄ ⇠ 500GeV. We would also like to point out that the

NNLO prediction based on conventional scale-setting with µR = mt exhibits the “increasing-

decreasing” behaviour pointed out in Ref. [11], albeit much less pronounced than in the PMC

scale-setting approach.

5 Comparisons between di↵erent pdf sets

An alternative way of assessing the pdf dependence in theory predictions is to compare calcu-

lations with di↵erent pdf sets. In this section we compare NNLO QCD predictions based on

four state-of-the-art pdf sets: CT10, HERA 1.5, MSTW2008 and NNPDF 2.3. We compare

the central pdf members for central scale choice µF = µR = mt.
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Applications of PMC renormalization-scale-setting  
for top, Higgs production, and other processes at the LHC
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draw definite conclusion on the SM predictions. For the
ATLAS data at 8TeV, which is relatively of less experi-
mental uncertainty, it is found that the PMC prediction
show a much better agreement with the data.

F. An estimation of the fiducial cross section
σfid(pp → H → γγ)

With the integrated luminosity 4.5fb−1 for
√
S = 7

TeV, 20.3fb−1 for
√
S = 8 TeV, and 3.2fb−1 for

√
S =

13 TeV, the ATLAS group gives their prediction for the
fiducial cross sections (σfid) for the process pp → H →
γγ at different collision energies [48]. The fiducial cross-
section σfid can be written as

σfid(pp → H → γγ) = σInclBH→γγA, (20)

where A is the acceptance factor, whose values for dif-
ferent collision energies are [48], A|7TeV = 0.620± 0.007,
A|8TeV = 0.611±0.012 and A|13TeV = 0.570±0.006. The
BH→γγ is the branching ratio of H → γγ. By using the
Γ(H → γγ) under conventional scale-setting, the LHC-
XS group predicts BH→γγ = 0.00228 ± 0.00011 [3]. A
detailed PMC analysis for Γ(H → γγ) up to three-loop
levels have been given in Ref.[49]. Using the formulas
given there, we obtain Γ(H → γγ)|PMC = 9.34 × 10−3

MeV for MH = 125 GeV. Using this value together with
Higgs total decay width ΓTotal = (4.07 ± 0.16) × 10−3

GeV [3], we get BH→γγ |PMC = 0.00229± 0.00009. Thus
the main differences for the fiducial cross-section σfid is
from the differences of inclusive cross-section σIncl men-
tioned in the last subsection.

σfid(pp → H → γγ) 7 TeV 8 TeV 13 TeV

ATLAS data [48] 49± 18 42.5+10.3
−10.2 52+40

−37

LHC-XS [3] 24.7± 2.6 31.0± 3.2 66.1+6.8
−6.6

PMC prediction 30.1+2.3
−2.2 38.4+2.9

−2.8 85.8+5.7
−5.3

TABLE V: The fiducial cross section σfid(pp → H → γγ) (in
unit: fb) at the LHC with the collision energies

√
S =7, 8 and

13 TeV, respectively.

We put the PMC predictions for the fiducial cross sec-
tion σfid(pp → H → γγ) at the LHC with the collision
energies

√
S =7 TeV, 8 TeV and 13 TeV in Table V,

where the ATLAS measurements [48] and the LHC-XS
predictions [3] are presented. The PMC fiducial cross-
sections are larger than the LHC-XS ones by ∼ 22%,
∼ 24% and ∼ 30% for

√
S =7 TeV, 8 TeV and 13 TeV,

respectively. Table V shows no significant differences be-
tween the measured fiducial cross sections and the SM
predictions are observed within the current experimental
uncertainties. However, a better agreement of PMC pre-
dictions with the measurements at

√
S = 7 TeV and 8

TeV are observed. This performance can be more clearly
shown by Fig.(6), which presents the comparison of PMC
predictions for σfid(pp → H → γγ) with the ATLAS mea-
surements at various collision energies.
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FIG. 6: Comparison of the PMC predictions for the fiducial
cross section σfid(pp → H → γγ) with the ATLAS measure-
ments at various collision energies [48]. The LHC-XS predic-
tions [3] are presented as a comparison.

IV. SUMMARY

We have studied the Higgs boson hadroproduction
cross-sections by using the PMC scale-setting. The PMC
provides a systematic way to set the renormalization scale
of high-energy process, which has a solid theoretical foun-
dation and satisfies renormalization group invariance.
After applying the PMC scale-setting, the large renor-
malization scale uncertainties for the Higgs total and sep-
arate production cross-sections are eliminated simultane-
ously, and the scheme-and-scale ambiguities under con-
ventional scale-setting are cured. Taking the dominant
gluon-fusion channel as an example, Table II shows un-

der the conventional scale-setting, σ(gg)
Total = 18.76+12.69%

−11.41%

pb for [mH/2, 2mH ] and σ(gg)
Total = 21.14+11.45%

−11.26% pb for
[mH/4,mH ]. While, after applying the PMC, we get the

NNLO prediction σ(gg)
Total

∼= 23.61 pb for µr[mH/4, 2mH ].
Such renormalization scale-independence is reasonable,
since the αs running behavior, or equivalently the renor-
malization scale, at each perturbative order are precisely
fixed by using the RG-equation.

By combining relevant Higgs boson production modes
and the electroweak corrections into consideration, a
more precise predictions for inclusive pp → H produc-
tion cross-sections are obtained by using the PMC. The
inclusive cross-section increases with the increment of
the hadron collision energy. To compare with the LHC-
XS predictions with a guessing scale µr = mH , our
PMC predictions are increased by about 21%, 23% and
29% for

√
S =7 TeV, 8 TeV and 13 TeV, respectively,

which shows a better agreement with the latest LHC
ATLAS measurements, especially for the measurements
at

√
S =7 TeV and 8 TeV. A comparison with fidu-

cial cross sections has been presented in Table V, which
shows no significant differences between the measured

S-Q Wang, X-G Wu, sjb �(pp! HX ! ��X)

PMC
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Introduction

The unit from the University of Genoa has a wide experience in water quality and quantity
management in the urban areas, having developed research and collaboration projects with
municipalities, and other local authorities on this and related subjects. Such experience is
documented by the specific curricula of the staff members involved in the project, all of them being
researchers in the hydrology and water management field.

Also, a relevant contribution to the project activities is derived from the availability of one
experimental site for water quantity control and the results of various water quality monitoring
campaigns performed all over the regional territory at residential, industrial, commercial and
infrastructure sites. The experimental site is constituted of a fully monitored green roof system
obtained after renovation of the existing green coverage of one of the main buildings of the university,
therefore a very controlled and easily manageable situation.

From the dissemination point of view, it is worth mentioning the series of national annual conferences
organised by the University of Genoa in this specific field since 2003, on the themes of “Sustainable
Urban Drainage” involving the main Local and National Authorities. The main objective of such
initiatives was to provide a forum for researchers, practitioners and companies in the field so as to
foster the exchange of knowledge and operational experiences between the various subjects
involved. As for the capacity to directly influence local/regional policies we can mention here the
contribution provided, within a recently completed EU funded LIFE Environment project, to the
contents of the new text of the regulation about storm water quality and treatment requirements –
currently in preparation by the competent authorities of the Liguria Region of Italy – which certainly
constitutes one of the most relevant practical consequences achieved.

The following projects have been financed to the in the University of Genova with interregional
cooperation or Structural Funds:

-ECOMAWARU “ECO-sustainable MAnagement of WAter and wastewater in RUral communities”,
EC LIFE+ 2008 Environment Project (2010-2013);

-CHEF “Cultural Heritage Protection against Floods”, 6th Framework Programme, Specific Targeted
Research or Innovation Project (2007-2009);

-ESTRUS “Enhanced and Sustainable TReatment for Urban Stormwater” , EC LIFE 2004
Environment Project (2005-2008);

-RIVES Project "Protection of the territory against natural risks" - INTERREG III A (ALCOTRA)
Program, contribution of the University, activities on territorial planning and proposals on urban and
protezione civile instruments and procedures " (2005-2006) in behalf of Provinces of Cuneo and
Imperia;

-MOS “Integrated Multi-Objective System for Optimal management of urban drainage”, EC LIFE
2000 Environment Programme Project (2001-2004).

The unit from the University of Genoa has a wide experience in water quality and quantity
management in the urban areas, having developed research and collaboration projects with
municipalities, and other local authorities on this and related subjects.
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