AM08 & AM2020 requirements from ATLAS

Alberto Annovi INFN Pisa

Work plan

- AM08 final prototype will all features
- AM2020 large area device
- AM08 Main goals
 - Have one "core" with known full custom with the main goal of using it for pattern matching to test the basic functionality on board
 - Test all the features that we want in AM2020
 - Use additional "cores" to make sure we can test all features even in case one features is not working

AM08 vs AM2020 goals

- We need to design AM08 keeping in mind AM2020 goals
- Let's avoid "this was decided for AM08 we have to change it for AM2020"
- In order not to forget AM2020... which is the ultimate goal... write specs for both!
 - Keep AM2020 specs updated along the AM08 design
 - Make sure for every AM08 choice we evaluate the impact on AM2020 in addition to AM08 impact

	AM08	AM2020
Parameter 1	value	value
Parameter 2	value	value

AM08/AM2020 requirements

- Large pattern density per chip: goal 512k patterns/chip
 - 8 bus, 16 bits input words, 18 bits memory (TBC)
- Input clock speed 250MHz 500MHz
- Low power consumption
 - Need 0.4 fJ/comp/bit at 50% bit flip (more info later)
 - Some stress here ... to be discussed
 - Per bit means per input bit (16 bits per word)
 - 0.5 fJ @ 100% usage 250 MHz 50% bit flip implies: 8W
 - (0.5E6*8*16*250E6)*0.5E-15
- Output bandwidth not defined yet
 - Less than 2 busses of 32 bits running at input clock speed
 - Shall we define this to be 250MHz in any case?

AM08/AM2020 requirements

- MLM submission: minimize submission cost
 - Keep under control NRE cost (# of layers, additional processes)
 - Will include 6 wafers from different corners
- Follow up with large production
- ATLAS possible production numbers
 - Regional tracking 6400 good AM2020 (|eta|<4)
 - Full scan tracking 12800 good AM2020 (|eta|<4)
 - Regional tracking 4000 good AM2020 (|eta|<2.5)
 - Full scan tracking 8000 good AM2020 (|eta|<2.5)
 - Changes to be expected

IO (worst case)

- Input 8 buses (0.2-0.4mW/pair)
 - Each at 16 bits * 500MHz = 8Gb/s
 - For each bus use four 2Gb/s pairs (eventually max FPGA speed)
 - Total of 32 pairs for ≈12.8mW
- Output 2 busses (8.5mW/pair)
 - Each at 32 bits * 500MHz = 16Gb/s
 - For each bus use eight 2Gb/s pairs (eventually max FPGA speed)
 - Total of 16 pairs for ≈136mW
- Controls
 - ~30 input signals?
 - ~10 output signals?
- Total <200mW power (assume <300mW with control signals)
 - The chip could be a 6-8W device
 - Power estimate for FPGA outputs 60 pairs @ 8.5mW = 500mW
 - What is the power for one FPGA input and output pair?

INFN proposal for a common & modular HW model

ATCA

40Gb/s board-board

*2 (bidirectional)

*91 links

=O(7 Tb/s)

Highly modular system

x16

FPGA +AM

future AM chip

FPGA(s) + RAM(s) second stage fit

PRM06: Mezzanine with AM06

- Future PRM with AM08/AM2020 will be "similar"
- Embed caps in the package to allow AM chips on both sides.
 - Do you see issues with this?
 - Save area. Allow contingency in case pattern density below 512k/chip
 - Could simplify routing (if and only if) ball layout carefully designed?
 - Could we distribute a single LVDS signal to two chips?

Power budget

- 400W per ATCA slot
 - Allocate 100W to main card _{FPGA}
- Allocate 150W per PRM +AM
 - 50W to FPGA
 - 100W for 16 AM2020
 - 6W per chip (including IO and DC/DC converter efficiency)
- DC/DC efficiency to be accounted for all contributions
 - 48V input
 - 48V to 12V at ~92%
 - 12V to final at ~92%
 - Overall efficiency ~85%

AM2020 power budget

- 100W for 16 AM2020
 - 6W per chip (including IO and DC/DC converter efficiency)
 - 5W at 85% efficiency
 - 4.8W for processing, 0.3W for IO
 - At 250MHz 100% usage \rightarrow 0.3 fJ/comp/bit
 - At 0.5fJ can do ~60% usage
 - Assume >=75% usage → need < 0.4 fJ/comp/bit</p>
 - Specs at 0.4 fJ/comp/bit !!!

Let's avoid surprises later on

- We need to design AM08 keeping in mind AM2020 goals
- In order not to forget AM2020... which is the ultimate goal... write specs for both!
- Start allocating area, power, latency, other(?) budget for both AM08 and AM2020!
 - The sooner we have a good estimate (specs) for each piece of AM08 (and AM2020) the better
 - We know the "future" from AM06 experience
 - no (or at least less) surprises for AM2020