All Digital PLL

Maroua Garci - Francesco Crescioli

Laboratoire de Physique Nuclaire et des Hautes Energies - Paris

AM08 workshop, 15 February 2017 INFN Pisa

Outline

- All digital PLL architecture
 - Existing architectures
 - Proposed architecture and preliminary simulation results

- 2 Improvements discussion
 - Improvements
 - Discussion

Existing architectures

PLL	Phase detector or comparator	Loop filter	Voltage Controlled Oscillator
Analog or linear PLL	Analog	Analog	Analog
Digital PLL	Digital	Analog	Analog
All Digital PLL	Digital	Digital	Digital

Table: Type of PLLs

Digital circuits are more efficient, flexible, and less noisy comparing to analog circuit

Existing architectures

- Phase detector
 - XOR
 - JK flip flop
 - 2 × D flip flop
- Time to digital converter
 - K counter
 - UP-DOWN Counter
- DCO
 - Includes DAC + Varactors
 - Simple divider
 - Delay line inverters

K.Lata and M.Kumar, ALL Digital Phase-Locked Loop (ADPLL): A Survey, IJFCC, December 2013

Proposed architecture

Figure: Proposed Architecture-ADPLL

Phase Frequency Detector

Figure: Phase Detector

Phase Frequency Detector

Figure: Phase Frequency Detector Simulation results

Time to Digital Converter

Figure: TDC architecture

Time to Digital Converter

Figure: TDC simulation results

Digitally Controlled Oscillator - Dummy model

```
\begin{aligned} & \textit{DCOhalfperiod} = \textit{invdelay} * (128 - \textit{ctrword}) \\ & \textit{Frequency range} = [39 \text{Mhz-}2,5 \text{GHz}] \text{ for } \textit{invdelay} = 0.1 \textit{ns} \end{aligned}
```


Figure: DCO Simulation Results

Preliminary simulation results

Example: for $f_{ref} = 100MHz$:

 $\textit{f}_{DCO} {=} \textit{f}_{\textit{ref}}$ after Locktime = 1,5 ms with $\Delta \textit{T}_{\textit{max}} = 0,1 \textit{ns}$

Figure: ADPLL Simulation results

All digital PLL

ADPLL, frequency divider and Shift register

Figure: Different Clk generation - different delays

This could be a solution for a better power distribution

Improvements - Discussion

- Improvements
 - Add Filter
 - Analyse
 - Jitter
 - Lock time
 - Stability
 - Noise
- Discussion
 - Exact value and number of output frequencies?
 - DCO with Milano

Thank you for your attention