Vertex detectors at e⁺e⁻ and high energy pp colliders

Alberto Cervelli

My Experience so far

- 2005 Graduated in Univesità di Pisa: tau decays in strange final states
- 2006-2009: PhD in Univesità di Pisa: BaBar experiment, SVT operations and LFV in tau sector
- 2009-2011: Assegno di ricerca at Univesità di Pisa: Development of new silicon detectors for super flavor factories, studies for g-2 measurement in tau decays, impact of polarized beams in LFV searches in tau decays
- 2012-ongoing: PostDoc Universität Bern:
 - Atlas experiment: IBL construction and readout, SUSY searches in EWK production, R&D for ITK (LR HV-CMOS)
 - PET-TT (ToF PET project)
 - Space applications of HEP detectors (collaboration with JUICE mission)

Silicon Vertexes: Historic Perspective

- '70s : first Silicon Vertex detectors
- First use: coherent production in fixed target experiment
- '80s: micro strips reached few μm resolution
- now: Pixel detectors
- Breakthroughs in HEP: top discovery, direct CPV in B observation, physics at high energy pp colliders

Vertexing

- Aim of a vertex detector: resolve both primary and decay vertices and those from secondary particles
- Require: 3D hit reconstruction, high granularity, proximity to the Interaction Point
- Strongly dependent on resolution of innermost layer and detector lever arm

- Silicon detectors: small size, high channel density, good electric properties at room temperature, high rate capabilities.
- Different physics case need different approaches in detector development

 P_T is function of the sagitta:

$$\sigma_s = \sqrt{\frac{A_N}{N+4}} \cdot \frac{\sigma_{r_\phi}}{8}$$

$$\frac{\sigma_{p_T}}{p_T} = \frac{8p_T}{0.3BL^2} \cdot \sigma_s$$

Resolution is worsened by other contributions: e.g. Multiple Scattering, constant for given P_T :

$$\left. \frac{\sigma P_T}{P_T} \right|_{MS} = 0.045 \frac{1}{B\sqrt{tX_0}}$$

Tracking resolution:

 \bullet is inversely proportional to P_{T}

•increases linearly with the B field intensity

•increases quadratically with the dimension of tracking volume

•increase with the square root of tracking points

•decrease with square root of budget material

Bologna 30th Jan 2017

5

Vertexing for Flavor Physics: BaBar

6

Other goal: understanding up-sector CPV:

D mesons not produced coherently at $\Upsilon(4S)$ energy, D tagging made by measuring P and charge of soft pion emitted by the D^{*}.

Soft pion: low P_T tracked only by the Silicon tracker, standalone tracking for P_T <100 MeV

BaBar designed to measure B meson mixing

BaBar operated at asymmetric machine: $\Upsilon(4S)$ produced at rest in CM, decay time proportional to the decay length of the B in lab frame

Resolution <80 μ m, and the $\sigma(\Delta z)$ <125 μ m to resolve B Vertices.

erto Cervelli

BaBar SVT

Asymmetric design, but uniform performance for all polar angles.

Low P particles: budget material kept at minimum.

High radiation environment: high luminosity (10³⁴cm⁻²s⁻¹) requires operation to be stable for >2MRad

- •300 µm Silicon wafer thickness
- •5 Layers of double sided lecture silicon, with stereo strips.
- 1556 readout chips, 140K channels
- 50 µm pitch for p,n strips in inner layers, and p-side on outer layers, 100µm pitch on n-side outer layers
- Six different module geometries
- Bias Voltage applied 10-40V
- •Maximum trigger rate 10KHz
- Maximum hit rate/channel 150KHz

Cervelli

•Budget material 5% X_0

BaBar SVT

SVT Performances

TDR target for perpendicular tracks: Layer I-3 10-15µm Layer 4-5 30-40µm

Bologna 30th Jan 2017

Average efficiency ~98% per track

The BABAR Detector: Upgrades, Operation and Performance NIM A729 (2013) 615-701 ervelli

Physics Results

Soft pion reconstruction from $D^{\star +} \rightarrow \pi^+ D^0$ mostly done by Silicon Vertex tracker alone First evidence of D⁰ mixing

Resolution in z allowed for precise B meson mixing measurements

Neutral Mesons

fed area has CL > 0.9 995_{∆m} 1.0 $\Delta m_{\rm H} \& \Delta m_{\rm H}$ 0.5 0.0 -0.5 -1.0 -1.5 0.0 0.5 1.0 1.5 2.0 ō 30

1.5

BaBar and Belle managed to measure the flavor property of the SM at unprecedented precision.

This effort was made possible by the use of a precise and efficient Silicon vertex tracker.

Resolution in z allowed for precise B meson mixing measurements

charm physics

τphysics

Silicon vertex detector allowed for precise reconstruction of tau decay products

A large array of decay state were tested to unprecedented level, still best results w.r.t. LHC experiments

Super Flavor Factories

At the end of their lifetime BaBar and Belle were limited by statistics.

SuperFlavor factories: luminosities of up to 10³⁶cm⁻²s⁻¹

SuperB: nano beams and polarized e⁻.

Tracking tau decay and D^* vertices for LFV studies, D CPV

Rates too high for Double Sided Strip Detectors.

Impact parameter resolution improvement needed for D* tau physics

Moving from DSSD to Pixel

From Strips to Pixels

Double sided silicon detectors limitation: ghost tracks.

Tracking of two tracks hitting at the same time is ambiguous

Becomes main problem in high track density environment (i.e. LHC).

Pixel do not have ambiguities: multiple tracks passing through sensor have unambiguous hits

Monolithic Active Pixels

MAPs integrate sensor and electronics in the same substrate.

Charge is collected via thermal diffusion on the nwell. No depletion

Active layer is very thin $\sim 10 \mu m$. Substrate thinning possible down to $50 \mu m$

Full signal processing chain implemented at pixel level

MAPS performances

A 4K (32x128) matrix of $50x50\mu m^2$ tested on beam with both irradiated (10MRad) and non irradiated chips, with different thinnings ($100\mu m$ and $300\mu m$).

Efficiency of ~92% with $400e^{-}$ threshold. Uniform over the pixel matrix.

Resolution measured from track fit residual after multiple scattering correction agrees with $50/\sqrt{12=14.4\mu m}$.

Alberto Cervelli

Physics at LHC

Needs for Vertex detector at LHC:

High radiation: large amount of damage to Si from non ionizing radiation
High interaction rate: Pile-Up (i.e. more than one interaction during a single bunch crossing)

Needs:

Radiation Hard, stable in operation through the aging process
High granularity
Fast to cope with interaction rate

Bologna 30th Jan 2017

Solution: Pixels

Small size: high granularity and spatial resolution.

Short drifts: Faster than strips

to Cervelli

ATLAS Pixel detector

•3 Layers + 6 Disk endcap •ATLAS Pixel detector has 1744 Hybrid modules with 80M readout channels •Pixel size 50x400µm² •300µm thickness •0.1X₀ material budget •High resolution: $8\mu m r\phi$, 75 μm in z •Read out speed of 40Mb/s-160Mb/s depending on Layer. Performance in Run I: •98% average efficiency •3500 e^{-} threshold with ~160 e^{-} noise (i.e. 20 S/N ratio)

ATLAS IBL

ATLAS IBL

IBL composed of 14 staves, each with 32 modules, read by 16 front end chips.

It has 24 double planar sensors (central sensors, and 8 3D (at the edges)

The IBL readout speed: I60Mb/s.

Material Budget 1.5% X₀

Two different technologies:

Planar: usual Pixel configuration, slim edges to reduce the non sensitive area

3D: Horizontal depletion, small depletion space (Rad-Hard), BUT columns are not sensitive

IBL Construction

22

Hybrid detector: Sensors are bump bonded to the FE chip.

Bonding is a critical and expensive process.

After FE bonding to sensors, sensors tested for their Electrical properties.

Junction tested through I-V measurements

Very high voltages to allow for operations with high radiation damage

IBL Modules performance

Before glueing sensors to support and connect readout modules were tested:

the digital components were tested injecting pulses through the front-end.

The analog component by injecting pulses in the pre-amplifier stage of the sensor: ENC characterized for each sensor.

Scan with radiation sources and cross talk measurement to check damaged bump bonds

IBL

IBL successfully installed in May 2014, started taking data in LHC Run2.

Stable performance during Run2.

b-jet tagging and tracking capabilities of the inner tracker improved

Pixel Readout Upgrade

End of Run I: innermost Pixel layers suffered from high occupancy.

Problem expected to worsen in Run2.

Faster readout is needed.

Solution: use the IBL readout system designed for 160 Mb/s operation

	Lin	k occupancy at 10	0 kHz L1 Trigger		
	μ	B-Layer	Layer 1	Layer 2	Disks
50 ns	37	51%	45%	69%	40%
	25	47%	42%	65%	37%
25 ns; 13 TeV	51	71%	67%	88%	52%
	76	95%	97%	148%	75%

L2 increase speed from 40Mb/s to 80Mb/s on single optical fibre, L1 from 80Mb/s to 160Mb/s on double optical fibre.

Optical components used in IBL not usable in Pixel operation due to different data encoding.

IBL readout cards reused

Pixel readout upgrade

New Optical Plugins

New optical components needed for upgrade

Provide a switching gain: can operate after rad damage on detector side transmitters.

Tested to be stable and able to adjust single channel threshold.

Installed in Dec2015, now being commissioned

ATLAS physics results

ATLAS object definition depends for almost all objects on Tracking:

lepton/photon isolation

JFV for jet objects

B-tagging

Tau reconstruction

Missing transverse Energy reconstruction

Atlas results

Recent direct measurement from tt \rightarrow dilepton at 8 TeV Events / 2 GeV Data tt, m = 172.5 GeV Correct match 600 Uncertainty Wrong / no match NP/fake leptons Single top Z+jets 500 WW/WZ/ZZ ATLAS 400 s=8 TeV, 20.2 fb⁻¹ 300E 200 100E 0 Data/MC 1.2 0.8 40 60 80 100 120 140 160

Sta	tus: August 2016 Model	e, µ, τ, γ	Jets	Enter	State-	Mass limit	Vi = 7. 8 TeV VI = 13 TeV	$\sqrt{s} = 7, 8, 13 \text{ TeV}$ Reference
Inclusive Searches	USUGAA CUSSM $\frac{1}{2} + \frac{1}{2} - \frac{1}{2} \int_{0}^{1} \frac{1}{2} \exp\{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \exp\{\frac{1}{2} + \frac{1}{2} \exp\{\frac{1}{2} + \frac{1}{2} \exp\{\frac{1}{2} + \frac{1}{2} \exp\{\frac{1}{2} + $	$0.3_{x,p}(1.2) = 1$ 0 0 $3_{x,p}$ $2_{x,p}(55)$ 1.2(x+0.1) 2_{y} y y $2_{x,p}(x)$ 0	2 10 jets/7 2 6 jets 1 - 0 jets 2 6 jets 2 6 jets 4 jets 0 - 0 jets 0 - 0 jets 0 - 2 jets 1 - 4 2 jets 2 2 jets 2 1 jets	· Yes Yes · Jes Jes Jes Jes	21.3 12 12 12 12 12 12 12 12 12 12 12 12 12	sot GeV soc GeV	1.05 TeV m(d)(m(d)) 1.05 TeV m(d)(m(d) m(d) m(d)(m(d)) m(d) 1.05 TeV m(d)(m(d)) m(d)(m(d)) m(d) 1.05 TeV m(d)(m(d)) m(d)(m(d)) m(d) 1.05 TeV m(d)(m(d)) m(d)(m(d)) m(d) 1.05 TeV m(d)(m(d)) m(d) m(d) 1.05 TeV m(d)(m(d)) m(d) m(d) 1.05 TeV m(d)(m(d)) m(d) m(d) m(d) 1.05 TeV m(d)(m(d)) m(d) m(d) m(d) m(d) 1.05 TeV m(d)(m(d)) m(d) m(d) m(d) m(d) m(d) m(d)(d)(d) m(d) m(d) m(d) m(d) m(d) m(d)	1507.05425 A*LAB-CONF-2016-078 1806-87779 A*LAB-CONF-2016-078 A*LAB-CONF-2016-078 A*LAB-CONF-2016-078 A*LAB-CONF-2016-027 1807.05079 1807.05079 1807.05420 A*LAB-CONF-2016-088 1505.05290 1507.05420
T med	12. 2-445 13. 2-415 13. 2-415	0 0-1+,µ 0-1+,µ	3+ 3+ 3+	Yes Yes Yes	14.0 14.0 20.1		1.00 TeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 14/07/0600
direct production	$\begin{array}{l} \delta_{1} \delta_{2}, \delta_{3}, - i k \delta_{1}^{2} \\ \delta_{1} \delta_{2}, \delta_{3} - i k \delta_{1}^{2} \\ \delta_{1} \delta_{1}, \delta_{3} - i k \delta_{1}^{2} \\ \delta_{1} \delta_{1}, \delta_{3} - i k \delta_{1}^{2} \\ \delta_{1} \delta_{1} \delta_{3} - i k \delta_{1}^{2} \\ \delta_{1} \delta_{2} \delta_{3} - i \delta_{3}^{2} \\ \delta_{2} \delta_{2} \delta_{3} - i \delta_{3} \\ \delta_{2} \delta_{2} \delta_{3} - i \delta_{3} \\ \delta_{2} \delta_{2} \delta_{3} - \delta_{3} \\ \delta_{2} \delta_{2} \delta_{3} - \delta_{3} \\ \delta_{3} \delta_{3} \delta_{3$	0 $2r,\mu(SS)$ $0,2r,\mu$ $0,2r,\mu$ 0 $2r,\mu(Z)$ $3r,\mu(Z)$ $1r,\mu$	23 12 125 125 12 125 12 12 12 13 14 14 15 0 jets + 23	Yes Yes Yes Yes Yes Yes	3.2 13.2 (7)(2.3 (3)(2.3) 3.2 26.3 12.3 25.3	840 GeV 329-665 GeV 309-756 GeV 98-325 GeV 98-325 GeV 130-800 GeV 230-750 GeV 320-620 GeV	ಸ್ಕಾರಿ 100 GaV ಸ್ಕಾರಿ 100 GaV ಸ್ಕಾರಿ 100 GaV ಸ್ಕಾರಿ 100 GaV ಸ್ಕಾರಿ 100 GaV ಸ್ಕಾರಿ 100 GaV ಸ್ಕಾರ 100 GaV ಸ್ಕಾರ 100 GaV ಸ್ಕಾರ 100 GaV ಸ್ಕಾರ 100 GaV	1806.00772 ATLAS-CONF-8016-007 1079.2110, ATLAS CONF-2016-007 1084.00114, ATLAS CONF-2016-007 1804.07773 1904.07773 1904.07773 1905.0042 ATLAS-CONF-2016-008 1506.00416
direct	$\begin{array}{l} b_{1,k}b_{1,k-1}^{k}(t-t) f_{1}^{k} \\ f_{1}^{k}f_{1}^{k}, f_{1}^{k} \rightarrow h(t^{2}) \\ f_{1}^{k}f_{2}^{k}, f_{1}^{k} \rightarrow h(t^{2}) \\ f_{1}^{k}f_{2}^{k} \rightarrow h(t^{2}) \\ f_{2}^{k}f_{2}^{k} \rightarrow h(t^{2$	2 «.β 2 «.β 2 f 3 «.β 2 3 «.β 1 «.β 1 «.β 2 y	0 0 0 2 jm 1 0 2 } 0 2 }		20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-335 GeV 140-475 GeV 255 GeV 715 GeV 425 GeV 575 GeV 115-370 GeV 950 GeV	الالم المراقع (1994) المراقع (1994) المراق	1405 5254 1405 5254 1407 0540 1407 7055 1405 5259 1405 525 1501 57100 1405 5086 1507 55425 1507 55425
particles	Direct $\tilde{E}_{1}^{*}\tilde{E}_{1}^{*}$ prod., long-lord Direct $\tilde{E}_{1}^{*}\tilde{E}_{1}^{*}$ prod., long-lord Stable, stopped j IP-hadron Stable j IP-hadron GMSB, stable τ , $\tilde{E}_{1}^{*} \rightarrow \eta \lambda$, $\beta \mapsto \eta$ GMSB, $\tilde{E}_{1}^{*} \rightarrow \eta \lambda$, $\beta \mapsto \eta$ $\tilde{E}_{1}^{*} = \eta \lambda$, $\beta \mapsto \eta$ $\tilde{E}_{1}^{*} = \eta \lambda$, $\tilde{E}_{1}^{*} = \eta \lambda$, $\beta \mapsto \eta$ $\tilde{E}_{1}^{*} = \eta \lambda$, $\tilde{E}_{1}^{*} = \eta \lambda$, $\beta \mapsto \eta$	1 Disapp. trk 0 bk 0 bk dElds.trk (c.g) 1/2 p disples/splip displtr. pt	1 jet 1 0 jet	Yes Yes Yes Yes 	20.3 16.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3 21.3	275 GeV 850 GeV 537 GeV 440 GeV 10 Te 10 Te	reg(1)-reg(2)-180 Mark, reg(1)-132 ma reg(2)-reg(2)-180 Mark, reg(1)-132 ma reg(2)-reg(2)-180 Mark, reg(1)-150 ma reg(2)-180 Gark, rst participantona 1.000 Tark	1318.3675 1906.05030 13705.0584 1806.05120 1804.84200 1411.6755 1405.0542 1504.05182
Add	$\begin{array}{l} UFV ppertup + \chi, p_1 - upp (at)(at)(at)(at)(at)(at)(at)(at)(at)(at)$	$e_{\mu}e_{\mu}e_{\mu}e_{\mu}e_{\mu}e_{\mu}$ $2e_{\mu}(55)$ $q_{\mu\nu} 4e_{\mu}$ $0 4e_{\mu}$ $0 4e_{\mu}$ $2e_{\mu}(55)$ $0 4e_{\mu}$ $2e_{\mu}(55)$ $0 4e_{\mu}$ $2e_{\mu}(55)$	035 Slarge R ; Slarge R ; 035 2 jets + 21 2 je	Yes Yes Yes Yes	3.2 28.3 13.3 28.3 14.8 14.8 14.8 13.2 15.4 28.3	1.14 430 GeV 1.80 810 GeV 830-510 GeV 0.410 Te	1.9 TeV A ₁₀ 10 11. A ₁₀₀ and 007 1.40 TeV mi() m(d), m_{men} (1 mm) 1.40 TeV mi() m(d), m_{men} (1 mm) 1.40 TeV mi() above	1807.08079 1404.2500 ATLAS.CONF.2016-075 1805.0586 ATLAS.CONF.2016-087 ATLAS.CONF.2016-087 ATLAS.CONF.2016-087 ATLAS.CONF.2016-087 ATLAS.CONF.2016-087 ATLAS.CONF.2015-015
where a	Scalar charm. 2-4:12	0	2.	Yes	28.3	STE GeV	mi ² 1>200 GeV	1501 01325

Alberto Cervelli

Future of Vertex Trackers

Towards LHC phase 2

LR HV-CMOS

30th Jan 2017

Alberto Cervelli

Application: PET-ToF

TOF PET provide a great spatial resolution with small bore holes.

Now a 600ps resolution TOF has been achieved, corresponding to 9cm resolution.

Goal for a <100ps (30ps) resolution which would match PET resolutions

A PET-TOF offers an intrinsic 3D imaging of the body.

The main requirements for the detector are:

•High detector Granularity, Si detector pixel IxI.2x0.2mmVs LYSO 4x4x20mm

•High photon conversion detection to reduce statistical backgrounds

•Small readout time to reduce fake coincidences and increase the time resolution of the single hits

Alberto Cervelli

Conclusion

•Silicon vertex trackers were and are of crucial importance for modern detectors at colliders but...

•To build the optimal detector for our purposes we need to understand the underlying physics, both in terms of discovery goals and machine performances

•Different conditions need different detectors, sometimes we can chose, some times the boundary conditions force the choice to a specific of detector

•Sometimes it is not possible to completely redesign or substitute a detector, but it is possible to act on readout electronics and off detector components to make an older design cope with newerer, and unforeseen problematics

•The next phases of LHC upgrades will have to deal with both a change of physics goals and new machine conditions (higher pile up, more radiation) and it is one of the most interesting time for developing new silicon detector technologies!

Backup

Figure 1: FE-I4 layout and scheme of the signal processing.

Bologna 30th Jan 2017

36

Fig. 4. The rise of the silicon detector: area of silicon detectors in experiments as a function of time. The full squares denote space-based instruments. The exponential growth of the area with time is an expression of Moore's law.

30th Jan 2017

, waan da laan yelli

Impact parameter resolution is dominated by resolution on first hit

14

$$\sigma_{d_0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2}$$

Suggests small r_1 , large r_2 , small σ_1 , σ_2 But precision is degraded by multiple scattering...

Pixel readout upgrade

Old protetype New prototype AVAGO Rx

Readout driver (ROD) controls data acquisition and is used as a master for the Back of crate Card(BOC)

connected to BOC through VME bus and to ATLAS readout with ethernet

Controls hystogramming of data, and calibration control

Bologna 30th Jan 2017 Data from/to detector are transmitted through optical connections.

IBL has a 8b/10b encoding which could use commercial optical transceiver

Pixel uses a protocol which is not supported by commercial transceivers BOC provide connection between the ROD and the detector.

Is has 2 FPGAs one to connect to half a stave of modules, and is controlled through a microprocessor.

Data is received and decoded from detector, and clock and triggers are issued to detector