Iniziativa Specifica: Few-Body Systems

M. Viviani

INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

Large Scale Computing at INFN

Roma, 13 febbraio 2017

1/6

Scientific cases

- Structure and dynamics of few-nucleon systems
- Test of nuclear interaction derived from chiral effective field theory (low energy theory of QCD)
- Study of reactions of astrophysical interest
- Study of fundamental symmetries (parity & time reversal)
- Electroweak reactions (form factors, beta decays,...)
- Hypernuclei

```
Pisa: MV, J. Dohet-Eraly (Post-doc), A. Gnech (Dott.)
```

Trento: G. Orlandini, W. Leidemann, F. Ferrari-Ruffino (Dott.), S. Deflorean (Dott.)

From nuclei ...

Test of nuclear interactions in few-nucleon reactions

NN, 3N, γ -N, weak-N interactions derived using chiral perturbation theory

Calculation of astrophysical factor of reactions of astrophysical interest

In progress
$$d + d \rightarrow {}^{4}\text{He} + \gamma$$
, $p + {}^{3}\text{H}$, $n + {}^{3}\text{He}$

Study of fundamental symmetries Neutron spin rotation due to parity-violation at ORNL & NIST Electric dipole moment of light nuclei (time-reversal violation)

- Numerical method: expansion of the wave function over a basis
- 2014-2016: developed codes for *A* = 4
- 2017-2019: application for A = 5, 6
- LUNA (LNGS) experimental program

3
He + 3 He \rightarrow 4 He + $p + p$
 4 He + $d \rightarrow ^{6}$ Li + γ

a factor 100 ⇒ 25M core-hours 2 a core-hours

4/6

... to hypernuclei

Hyperon-nucleon interaction still in its infancy!

hypernucleus

hypernucleus

Interest: hypernuclei → neutron stars

- \bullet 2016: developed codes for A = 3, 4hypernuclei
- \bullet 2017-2019: extension to A = 5, 6hypernuclei
- ⇒ 10M core-hours

Details

Past....

- Fermi: 4M core-hours MPI Monte-Carlo code $\vec{e} + {}^{3}{\rm He} \rightarrow p + d$
- Galileo (2016): 250,000 core-hours OpenMP code for A = 4 scattering
- Marconi/A1 (2016): 70,000 core-hours mainly dedicated to the hypernuclei calculations

2017

- Galileo (2017): 250,000 core-hours (125,000 stdh)
- Marconi/A1 (2017): 200,000 core-hours (50,000 stdh)
- Marconi/A2 (2017): 1,000,000 core-hours (125,000 stdh)

These resources are the only available to our groups!