QFT-HEP

nodes:

Bari Catania LNF: Maria Paola Lombardo -> large scale lattice QCD computations Lecce Napoli

> Pietro Colangelo INFN – Bari on behalf of the IS QFT-HEP

QFT-HEP

nodes:

Bari Catania LNF: Maria Paola Lombardo -> Lecce Napoli	in-medium effects on heavy hadron masses and widths QCD thermodynamics with $N_f=2+1+1$ Wilson fermions topology in hot QCD connection between the QGP and QCD conformal window
Napoli	connection between the QGP and QCD conformal window

Pietro Colangelo INFN – Bari on behalf of the IS QFT-HEP

QFT-HEP

in-medium effects on heavy hadron masses and widths QCD thermodynamics with $N_f=2+1+1$ Wilson fermions topology in hot QCD connection between the QGP and QCD conformal window

Pietro Colangelo INFN – Bari on behalf of the IS QFT-HEP

Transport and response properties of strongly interacting systems

heavy quarkonium in a thermalized medium

lattice calculation of spectral functions: issue of systematic errors interplay with analytic methods (AdS/QCD)

ISSUES
$$G(\tau) = \int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega),$$
 $0 \le \tau < \frac{1}{T},$ $\int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega),$ $0 \le \tau < \frac{1}{T},$ $\int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega),$ $0 \le \tau < \frac{1}{T},$ $\int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega),$ $0 \le \tau < \frac{1}{T},$ $\int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega),$ $0 \le \tau < \frac{1}{T},$ $\int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega),$ $0 \le \tau < \frac{1}{T},$ $\int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega),$ $0 \le \tau < \frac{1}{T},$ $\int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega),$ $0 \le \tau < \frac{1}{T},$ $\int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega),$ $\int_{0}^{\infty} \frac{d\omega}{2\pi} K$

inverse problem ill posed

relativistic vs nonrelativistic kernels

QCD:
$$K(\tau, \omega) = \frac{\left(e^{-\omega\tau} + e^{-\omega(1/T-\tau)}\right)}{1 - e^{-\omega/T}}.$$

NRQCD:
$$K(\tau, \omega) \simeq \left(e^{-\omega\tau} + e^{-\omega(1/T-\tau)}\right)$$
:

 $\rho(\omega)~({\rm GeV^4})$

in NRQCD all the T dependence in the spectral function

FASTSUM Coll.

lattice setup: anisotropic lattice Wilson clover fermions for the sea quarks, NRQCD for bottom quarks

<i>M</i> _π [MeV]	Anisotropy = a_s/a_t	<i>a</i> s [am]	<i>a</i> t [am]		
450 390	6 3.5	167 123	28 35	•	Completed
230 390	3.5 7	113 123	33 18	8	In progress

ISSUE OF THE RECONSTRUCTION METHOD

Aarts, Lombardo et al., NPA 956 (2016) 717

ISSUE OF THE RECONSTRUCTION METHOD: use info from AdS/QCD

QGP continuously connected to conformal QCD

from free correlators to quasi-conformal behaviour

fits: include a T dependence in the coefficients

 $G(\tau) \rightarrow \frac{e^{-\omega_0(T)\tau}}{\tau^{\alpha(T)+1}}$

in a quasi-conformal theory

$$\begin{array}{l} G(\tau) \rightarrow \frac{e^{-\omega_0(T)\tau}}{\tau^{\alpha_H(T)}} \\ \alpha_H = 3 - 2\gamma \end{array} \\ \mbox{Iwasaki 2013} \end{array}$$

 χ correlator fit to quasi-conformal behaviour

HOT QCD and Nf=2+1+1 twisted mass Wilson fermions

u, d in the isospin limit physical s physical c

		Setup Nf=2+1+1							
			T = 0 (ETMC) nomenclature	β	a [fm] [6]	N_{σ}^3	N_{τ}	$T [{ m MeV}]$	# confs.
			A60.24	1.90	0.0936(38)	24 ³ 32 ³	$5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14$	$\begin{array}{r} 422(17)\\ 351(14)\\ 301(12)\\ 263(11)\\ 234(10)\\ 211(9)\\ 192(8)\\ 176(7)\\ 162(7)\\ 151(6) \end{array}$	585 1370 341 970 577 525 227 1052 294 1988
Number of flavours	$m_{\pi^{\pm}}$		B55.32	1.95	0.0823(37)	32 ³	$5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c} 479(22)\\ 400(18)\\ 342(15)\\ 300(13)\\ 266(12)\\ 240(11)\\ 218(10)\\ 200(9)\\ 184(8)\\ 171(8)\\ 160(7)\\ 150(7) \end{array}$	595 345 327 233 453 295 667 1102 308 1304 456 823
$N_f = 2 + 1 + 1$ $N_f = 2$	210 260 370 470 360 430		D45.32	2.10	0.0646(26)	32^3 40^3 48^3		$509(20) \\ 436(18) \\ 382(15) \\ 305(12) \\ 255(10) \\ 218(9) \\ 191(8) \\ 170(7) \\ 153(6)$	403 412 416 420 380 793 626 599 582

_

fermionic action

$$S_{f}^{\text{light}}[U,\chi_{l},\overline{\chi}_{l}] = \sum_{x,y} \overline{\chi}_{l}(x) \left[\delta_{x,y} - \kappa D_{W}(x,y)[U] + 2i\kappa a\mu_{l}\gamma_{5}\delta_{x,y}\tau^{3}\right]\chi_{l}(y), \qquad (1)$$

$$S_{f}^{\text{heavy}}[U,\chi_{h},\overline{\chi}_{h}] = \sum_{x,y} \overline{\chi}_{h}(x) \left[\delta_{x,y} - \kappa D_{W}(x,y)[U] + 2i\kappa a\mu_{\sigma}\gamma_{5}\delta_{x,y}\tau^{1} + 2\kappa a\mu_{\delta}\delta_{x,y}\tau^{3}\right]\chi_{h}(y), \qquad (1)$$

renormalized subtracted chiral condensate

$$\Delta_{l,s} = \frac{\langle \bar{\psi}\psi \rangle_l - \frac{\mu_l}{\mu_s} \langle \bar{\psi}\psi \rangle_s}{\langle \bar{\psi}\psi \rangle_l^{T=0} - \frac{\mu_l}{\mu_s} \langle \bar{\psi}\psi \rangle_s^{T=0}},$$

$$\sigma_{\bar{\psi}\psi}^2 = \frac{V}{T} (\langle (\bar{\psi}\psi)^2 \rangle_l - \langle \bar{\psi}\psi \rangle_l^2), \qquad V = a^4 N_\sigma^3 N_\tau.$$

disconnected chiral susceptibility

Burger, Lombardo et al., J. Phys. Conf. Ser. 668, no.1 012123 (2016) Trunin,, Lombardo et al., J. Phys. Conf. Ser. 668, no.1 0122092 (2016)

pseudocritical temperature

Ensemble	$a \; [{ m fm}]$	$m_{\pi} \; [\text{MeV}]$	$T_{\chi} \; [\text{MeV}]$	T_{Δ} [MeV]	$T_{\rm deconf}$ [MeV]
D210	0.065	213	158(1)(4)	165(3)(1)	176(8)(8)
A260	0.094	261	157(8)(14)	172(2)(1)	188(6)(1)
B260	0.082	256	161(13)(2)	177(2)(1)	192(9)(2)
A370	0.094	364	185(5)(3)	191(2)(0)	202(3)(0)
B370	0.082	372	189(2)(1)	194(2)(0)	201(6)(0)
D370	0.065	369	185(1)(3)	180(5)(1)	193(13)(2)
A470	0.094	466	200(4)(6)	193(5)(2)	205(4)(2)
B470	0.082	465	203(2)(2)	202(7)(1)	212(6)(1)

Topology ($N_f = 2+1+1$)

$$\begin{aligned} Z_{QCD}(\theta,T) &= \int [dA] [d\psi] [d\bar{\psi}] \exp\left(-T \sum_{t} d^{3}x \ \mathcal{L}_{QCD}(\theta)\right) = \exp[-VF(\theta,T) \\ &= \frac{\partial^{2} F(\theta,T)}{\partial \theta^{2}} \bigg|_{\theta=0} \equiv \chi(T)_{=} (\langle Q^{2} \rangle - \langle Q \rangle^{2})/V \end{aligned}$$

$$\chi_{top} = \langle Q_{top}^2 \rangle / V = m_l^2 \chi_{5,disc}$$

Topology ($N_f = 2 + 1 + 1$) gluonic operator m_{π} =370 MeV fermionic operator m_{π} =210-470 MeV

Needed assumption on fraction of DM made of axions

Assume: Axions make all of Dark Matter

Lower limits on the axion mass assuming that axions make 100% of DM:

Tg: This work, gluonic; Bon: Bonati et al.; D: DIGA, B: Borsanyi et al., P: Petreczky et al., T: this work, fermionic

Updated from Nature N&V

computing needs

at present:

FASTSUM (spectral functions) -> DIRAC UK (400 Mio core hours up to 2018) hot QCD with Wilson fermions -> Dubna+Berlin facilities

needs (next 3 years) 10 Mio core hours -> participation in computational activity (not only design and analysis)