The electromagnetic afterglow of GW170817 a.k.a. GRB170817A

Cristiano Guidorzi

light from/over the...

Binary Neutron Star Merger GW170817

In NGC 4993, some 130 million light-years (~40 Mpc) away from us

Low SFR= 0.01 $M_{sol} yr^{-1}$ $M_* = 10^{10.65} M_{sol}$

r_e=3.3 kpc d=2.1 kpc

Once Upon a Time (~1010 y before...)

Born as massive stars (between 8 and ~25 solar masses)

T~3 Myr, N~10⁴ Two OB main-sequence stars T~10⁴ yr, N~30 More massive star (primary) overfills Roche lobe. Stable or unstable nonconservative mass exchange Helium-rich star T~2.10⁵ yr, N~500 with OB-companion Primary explodes as $\sim 10^{-2} \text{ yr}^{-1}$ core-collapse SN or ECSN and becomes a neutron star or black hole Secondary is close to Roche lobe. T~10⁴yr, N~100 Accretion of stellar wind results in powerful X-ray emission Helium core of the secondary T~10⁴ vr, N~30 with compact companion inside mass-losing common envelope T~2.10⁴ yr, N~50 T~1Myr, N~1000 He- star with compact Red (super)giant with companion surrounded neutron star or black hole core (Thorne-Zytkow object) by an expanding envelope T~10 Gyr, N~10⁸ Secondary explodes as Single neutron star a supernova, ~10⁻² yr⁻¹ or black hole T~10 Gyr, N~10⁶ Supernova explosion Binary relativist disrupts the system. Two single neutron stars or black holes

Fast

star

amma-ray,

Merger of components with a burst of mission gravitational caves and

E~10⁵³erg, ~10⁻⁴ yr

Binary NS

formation

(Postnov+14)

Our story begins here

A short gamma-ray burst at +1.7 s

Nov 23, 2017 (LIGO+Virgo+gamma+17,ApJ)

Picture to keep in mind

Relativistic jet (radio/X-ray)

Isotropic Component Heavy elements (UV/opt/NIR)

Witnessing the birth of multimessenger astrophysics:

time-lapse of the e.m. counterpart discovery

A short GRB at +1.7 s

Nov 23, 2017 (LIGO+Virgo+gamma+17,ApJ)

e.m. counterpart discovery

e.m. counterpart: a time-lapse of snowballing discoveries

Nov 23, 2017 Fe (LIGO+Virgo+em+17, Ap))

Swope Telescope: the very first in the optical at 10 hours

X-ray and radio join in days later

Nov 23, 2017

Host: weak AGN (Blanchard+17, ApJ)

(Margutti+17,ApJ)

The γ-ray burst itself compared with other SGRBs

GRB170817A: put in context a borderline short-ish soft-ish GRB

 $T_{90} = 2.0 \pm 0.5 s$

GRB170817A: very low (isotropic-equivalent) luminosity GRB!

$E_{iso} = (5.3 \pm 1.0) \times 10^{46} \text{ erg}$

 $L_{iso} = (1.2 \pm 0.6) \times 10^{47} \text{ erg/s}$

Detectable out to d<80 Mpc (=twice as far) (our cosmological courtyard)

Nov 23, 2017

Ferrara, GW-astro day

(LV+Fermi+INTEGRAL teams,2017,ApJ) 20

X + radio afterglow an off axis jet sweeping up the interstellar medium

X-ray

22

(Fong+17, Margutti+17, ApJ)

X-ray

23

X-ray+radio afterglow: how does it compare with other SGRBs?

X-ray/radio afterglow comparably underluminous

Ferrara, GW-astro day

(Fong+17,ApJ)

One must explain

Radio-to-Xray SED also demands β(radio-X)~0.5

Nov 23, 2017

Ferrara, GW-astro day

(Credits: R. Margutti) 25

Interpretations

Scenario iv: truly underluminous viewed on axis/spherical

Rise: fireball deceleration and afterglow onset?

On-axis: afterglow onset?

$$\Gamma_{0} \sim 8.0 \left(\frac{E_{k,iso,52}}{n_{0}}\right)^{1/8} t_{pk,day}^{-3/8} \sim 2$$

$$t_{pk} \sim 15-30 \text{ days}$$

$$10 \text{ E}_{v,iso} = (5.3 \pm 1.0) \times 10^{47} \text{ erg}$$

 $n = (3 - 15) \times 10^{-3} \text{ cm}^{-3}$

Scenario iv: truly underluminous viewed on axis/spherical

Mildly Relativistic shock Cocoon emission?

Nov 23, 2017

E_{k,iso}

Scenario iii: Cocoon

Scenari i-ii: off axis jet

0 0

Relativistic beaming and deceleration

 θ_i

 $\Gamma(t)$

 θ_{obs}

 $1/\Gamma$

Zz

Relativistic beaming and deceleration

 $\Gamma(t)$

 θ_i

Nov 23, 2017

 θ_{obs}

Ferrara, GW-astro day

Ζ,

 $1/\Gamma$

Relativistic beaming and deceleration

θ

 θ_{obs}

Ferrara, GW-astro day

 $(\theta_{obs} - \theta_j)$

 $1/\Gamma$

off axis jet: clues

$$t_{pk} \approx 2.1 \left(\frac{E_{k,iso,52}}{n}\right)^{1/3} \left(\frac{\theta_{obs} - \theta_j}{10^\circ}\right)^{8/3} d$$

For t_{pk} ~ 15-70 d For typical parameters inferred from SGRBs (θ_j ~5-15 deg):

θobs ~20-40 deg

X-ray+radio: entire data set at t<40 d

Margutti+17; Guidorzi+17; Alexander+17

 $n \sim 10^{-2} - 10^{-4} \text{ cm}^{-3}$ $E_{k} = 10^{48} - 3 \times 10^{50} \text{ erg}$ $\theta_{obs} = 25 - 50 \text{ deg}$

Simulations on 4 clusters

Many thanks to:

- Fermi cluster (UNIFE, PI Zanghirati)
- Piero Rosati's team (UNIFE)
- Northwestern U.
- COKA GPU cluster (UNIFE & INFN-FE)

37

UV/Optical/NIR emission kilonova and heavy elements nucleosynthesis

Macronova/Kilonova

Nov 23, 2017

(Kasen+17)

Kilonova: theoretical evolution

170817: KN decays faster in blue than in red

2-comp model (blue+red KN) ~ works

Ferrara, GW-astro day

(Cowperthwaite+17,ApJ) 42

NIR/opt spectrum: unprecedented

(Pian+17)

neutron star merger

Nov 23, 2017

Ferrara, GW-astro day

See also Chornock+17; Smartt+17; Kasliwal+17; Troja+17

NIR: Impressive agreement with theory!

Atoms/ions with open *f*shells have many more available states compared to iron-peak elements

(Kasen+13)

Ion Nd 1 Configurations $4f^46s^2$, $4f^46s(5d, 6p, 7s)$, $4f^45d^2$, $4f^45d6p$, $4f^35d6s^2$, $4f^35d^2(6s, 6p)$, $4f^35d6s6p$

Number of levelsNumber of lines31,35870,366,259

(Tanaka+07)

Huge opacity! Flux shifts towards NIR

Nov 23, 2017

Broadenend and blended lines: high ejecta vel!

48

Combining GW+e.m. information to constrain the Hubble Constant H0

The Hubble (not so) Constant H0

GW170817: measuring H0!

(LV+em 17,Nature)

What's coming up next? Are we already done with GW170817?

The FUTURE of our EM follow-up:

THESEUS mission design and science objectives Probing the Early Universe with GRBs Multi-messenger and time domain Astrophysics The transient high energy sky Synergy with next generation large facilities (E-ELT, SKA, CTA, ATHENA, GW and neutrino detectors)

The End

688 Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. Einstein.

"...gravitational field invariably propagates with the speed of light"

§ 2. Ebene Gravitationswellen.

Aus den Gleichungen (6) und (9) folgt, daß sich Gravitationsfelder stets mit der Geschwindigkeit 1, d. h. mit Lichtgeschwindigkeit, fortpflanzen. Ebene, nach der positiven x-Achse fortschreitende Gra-