Newton-Cartan trace anomaly and non-relativistic RG flow

Giuseppe Nardelli

Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore, Brescia

January 2017

R.Auzzi, S.Baiguera, G.N., JHEP 1602 (2016) 003; *Erratum*: JHEP 1602 (2016) 177 R.Auzzi, G.N., JHEP 1607 (2016) 047 R.Auzzi, S.Baiguera, F.Filippini, G.N., JHEP 1611 (2016) 163

Main Purpose

Two "milestones" in the study of anomalies and local RG equations (relativistic case)

What's the analog in the non relativistic case?

Giuseppe Nardelli Newton-Cartan trace anomaly and non-relativistic RG flow

ヘロア 人間 アメヨア 一

E DQC

Weyl Invariance and Weyl Anomaly

Let
$$e^{iW[g]} = \int \mathcal{D}\phi \, e^{i\mathcal{S}[g,\phi]}$$

CLASSICAL CASE: Weyl Invariance $S[g, \phi] = S[g', \phi']$, under $g'_{\mu\nu}(x) = e^{2\sigma(x)}g_{\mu\nu}(x), \quad \phi'(x) = e^{\alpha\sigma(x)}\phi(x)$ implies

$$T^{\mu}_{\ \mu} = -\frac{2g^{\mu\nu}}{\sqrt{g}}\frac{\delta S}{\delta g^{\mu\nu}} = 0$$

QUANTUM CASE: The corresponding vev does not vanish anymore (anomaly)

$$\langle T^{\mu}_{\ \mu}
angle = - rac{2 g^{\mu
u}}{\sqrt{g}} rac{\delta W}{\delta g^{\mu
u}}
eq 0$$

Weyl anomaly in 2 dimensions

$$\langle T^{\mu}_{\ \mu}
angle = rac{c}{24\pi} R$$

Zamolodchikov's c-theorem (1986):

There exists a function $C(g_i)$ of the couplings g_i such that

- It decreases monotonically along the RG flow
- At the fixed points g^{*}_i, C(g^{*}_i) = c equals the central charge of the CFT (the same number entering the trace anomaly)

Originally derived from CFT correlators, the same *C* function appears also as *entanglement entropy* and as *euclidean partition function on the sphere*.

The reaction of physicists went along the canonical three steps

Giuseppe Nardelli Newton-Cartan trace anomaly and non-relativistic RG flow

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ <2 <</p>

The reaction of physicists went along the *canonical* three steps

• It's wrong!

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ <2 <</p>

The reaction of physicists went along the canonical three steps

- It's wrong!
- It's trivial!

Giuseppe Nardelli Newton-Cartan trace anomaly and non-relativistic RG flow

・ロト ・ 同ト ・ ヨト ・ ヨト

E DQC

The reaction of physicists went along the canonical three steps

- It's wrong!
- It's trivial!
- I thought of it first!

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

= nar

Trace Anomaly in D = 4

$$\langle T^{\mu}_{\mu} \rangle = -aE_4 + bW^2 + eR^2 + a'\nabla^2 R$$

$$egin{aligned} W^2 &= R^2_{\mu
u
ho\sigma} - 2R^2_{\mu
u} + rac{1}{3}R^2 \ E_4 &= R^2_{\mu
u
ho\sigma} - 4R^2_{\mu
u} + R^2 \end{aligned}$$

- eR² is zero at the conformal fixed point
- $\nabla^2 R$ terms can be eliminated by the addition of suitable local counterterm in the action (*e.g.* $\sqrt{g}R^2$)
- In the free theory, $a = \frac{1}{90(8\pi)^2}(n_S + 11n_F + 62n_V)$

・ロト ・ 同ト ・ ヨト ・ ヨト

SQ C

In 1988 Cardy proposed the even dimensional generalization of the *c*-Theorem: the *a*-Theorem In 1989 it was given a perturbative proof by Osborn There exists two versions: Assuming two fixed points in the UV and IR,

- Strong: *a*(*g_i*) decreases along the RG flow
- Weak: a_{UV} > a_{IR}

Such a function (initially identified as the coefficient of the E_4 term in the trace anomaly), was found in several different contexts, revealing therefore its *universal character*.

Tools to study irreversibility properties of RG flows: Timeline

- Conjecture of *a*-Theorem (Cardy 1988)
- Perturbative proof (Osborn 1989)
- In SUSY it is related to *R*-symmetry (Anselmi, Freedman, Grisaru and Johansen, 1998; *a*-max, Intriligator and Wecht, 2003)
- Holographic version (Freedman, Gupser, Pilch and Warner 1999)
- Related to entanglement entropy (Solodukhin 2008, Casini, Huerta, Myers, 2011)
- Related to the euclidean partition function on the sphere (Jefferis, Klebanov, Pufu and Safdi 2011)
- Non perturbative proof of the weak version of the theorem (Komargodski and Schwimmer 2011)

・ロト ・ 同ト ・ ヨト ・ ヨト

Dac

$a = n_S + 11n_F + 62n_V$ counts the number massless degrees of freedom

Example: QCD with N_c colors and N_f flavours

- $a_{UV} = 11 N_c N_f + 62 (N_c^2 1) = \#$ massless d.o.f. in UV
- after CSB, in IR are expected $a_{IR} = N_f^2 1$ Goldstone bosons
- *a*-Theorem constraints $N_f - \frac{11}{2}N_c < \sqrt{(11N_c/2)^2 + 62(N_c^2 - 1) + 1}$
- But for asymptotic freedom $N_f \frac{11}{2}N_c < 0$

Anomalies must satisfy Wess-Zumino consistency conditions:

$$\Delta^{\mathcal{W}}_{\sigma} W \sim \langle T^{\mu}_{\ \mu} \rangle = -aE_4 + bW^2 + eR^2 + a' \nabla^2 R$$

 $[\Delta^{\mathcal{W}}_{\sigma}, \Delta^{\mathcal{W}}_{\sigma'}] W = 0$ (WZCC)

This eliminates R^2 term at conformal fixed point,

Besides...

WZCC permits a natural classification of anomalies

$$\langle T^{\mu}_{\mu} \rangle = -aE_4 + bW^2 + a'\nabla^2 R$$

- **type A** anomaly: non-trivial solution of WZCC and **cannot** be eliminated by local counterterm (like *E*₄))
- type A' anomaly: non-trivial solution of WZCC but can be eliminated by a local counterterm (like ∇²R)
- type B anomaly: trivial solution of WZCC (like W²)

In order to inspect these issues, we should couple the non-relativistic theory to a non-relativistic version of gravity

> Gravity here is just a source for energy-momentum tensor:

$$\langle T_{\mu\nu} \rangle = -\frac{2}{\sqrt{-g}} \frac{\delta W}{\delta g^{\mu\nu}}$$

The kind of non-relativistic gravity depends on the symmetry of the non-relativistic theory: Lifshitz or Schrödinger

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Dynamical exponent: Time and Space scale in a different way:

$$t \to \lambda^z t$$
, $x \to \lambda x$.

- Without boost: studied in detail for various *d*, *z* (Arav, Chapman and Oz, 2014). All anomalies are type B
- With boost: anomalies are type B, plus at least one type A anomaly, for d = z = 2 (Jensen 2014)

Introduced in 1923 by Cartan to formulate Newtonian gravitation in a frame independent way

- introduce a degenerate "spatial metric" $h^{\mu\nu}$
- 1-form $n = n_{\mu} dx^{\mu}$ (local time direction), $n_{\mu} h^{\mu\nu} = 0$
- vector field v^{μ} , such that $v^{\mu}n_{\mu} = 1$
- this defines $h_{\mu\nu}$ such that $v^{\mu}h_{\mu\nu} = 0$, $h^{\mu\alpha}h_{\alpha\nu} = \delta^{\mu}_{\nu} v^{\mu}n_{\nu}$
- background gauge field for particle number symmetry A_{μ} (arising from the ambiguity $v^{\mu} \rightarrow v^{\mu} + h^{\mu\nu}A_{\nu}$)

Invariance under local non-relativistic boost transforms v^{μ} , $h_{\mu\nu}$, A_{μ} non-trivially (n_{μ} and $h^{\mu\nu}$ are left invariant)

$$\mathbf{v}^{\prime\mu} = \mathbf{v}^{\mu} + \mathbf{h}^{\mu
u}\psi_{
u}$$

$$egin{aligned} h'_{\mu
u} &= h_{\mu
u} - (n_{\mu}P^{
ho}_{
u} + n_{
u}P^{
ho}_{\mu})\psi_{
ho} + n_{\mu}n_{
u}h^{
ho\sigma}\psi_{
ho}\psi_{\sigma} \ A'_{\mu} &= A_{\mu} + P^{
ho}_{\mu}\psi_{
ho} - rac{1}{2}n_{\mu}h^{lphaeta}\psi_{lpha}\psi_{eta} \end{aligned}$$

$$P^{\mu}_{
u}=\delta^{\mu}_{
u}-m{v}^{\mu}m{n}_{
u}=m{h}^{\mulpha}m{h}_{lpha
u}$$

Symmetries of the NC geometry

All together, NC gravity encodes the following symmetries:

- local coordinate transformations (parametrized by ξ^{α})
- Milne boosts (parametrized by ψ_{ρ})
- U(1) gauge transformations (parametrized by Λ)

$$\delta h^{\mu\nu} = \mathcal{L}_{\xi^{\alpha}} h^{\mu\nu}$$
$$\delta n_{\mu} = \mathcal{L}_{\xi^{\alpha}} n_{\mu}$$
$$\delta h_{\mu\nu} = \mathcal{L}_{\xi^{\alpha}} h_{\mu\nu} - 2n_{(\mu} P^{\rho}_{\nu)} \psi_{\rho}$$
$$\delta v^{\mu} = \mathcal{L}_{\xi^{\alpha}} v^{\mu} + h^{\mu\nu} \psi_{\nu}$$
$$\delta A_{\mu} = \mathcal{L}_{\xi^{\alpha}} A_{\mu} + P^{\rho}_{\mu} \psi_{\rho} + \partial_{\mu} \Lambda$$

The independent components of NC metric provide the sources for stress tensor, number current, energy current, momentum density

$$\delta W = \int d^3x \sqrt{-g} \left(rac{1}{2} T_{ij} \delta \tilde{h}_{ij} + j^\mu \delta A_\mu - \epsilon^\mu \delta n_\mu - p_i \delta u_i
ight) \,,$$

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ <2 <</p>

Null reduction is a formidable instrument to deal with these symmetries: introducing the metric,

$$G_{MN}=\left(egin{array}{cc} 0 & n_{\mu} \ n_{
u} & n_{\mu}A_{
u}+n_{
u}A_{\mu}+h_{\mu
u} \end{array}
ight)$$

$$G^{MN} = \left(\begin{array}{cc} A^2 - 2v \cdot A & v^{\mu} - h^{\mu\sigma}A_{\sigma} \\ v^{\nu} - h^{\nu\sigma}A_{\sigma} & h^{\mu\nu} \end{array}\right)$$

and the null vector,

$$n^M = (1, 0, \ldots), \quad n_M = (0, n_\mu)$$

any NC scalar can be written in terms of the scalars of the extra dimensional space that can be build with *G* and *n* (Duval, Kunzle 1984).

Causality

The form $n = n_{\mu} dx^{\mu}$ gives the local time direction

Frobenius condition

 $dn \wedge n = 0$,

it is equivalent integrability of time slices

If it not satisfied, no absolute notion of future and past, causality is lost

(whether it is needed, depends on the circumstances)

No Frobenius, the anomaly has infinite number of terms

$$d = 2, z = 2$$
 case, (Jensen, 2014):

$$\mathcal{A} = \langle T_i^i - 2\epsilon^0 \rangle = -aE_4 + bW^2 + eR^2 + a'\nabla^2 R + \dots$$

the same expression as for the relativistic 3 + 1 anomaly, once null reduction has been performed

+ ... stands for an **infinite number** of higher derivative terms, such as:

$$\ldots + W_{ABCP} W^{ABCQ} W^{P}_{MQN} n^{M} n^{N} + \ldots,$$

(for each n^A , we buy 1 more derivative)

・ロト ・ 同ト ・ ヨト ・ ヨト

Dac

The infinite terms entering the anomaly can be conveniently classified [Auzzi, Baiguera, Filippini and N., 2016]

- they can be arranged into (infinite) distinct sectors closed under WT (labelled by an integer N_t)
- each sector contains a *finite* number of terms, and an iterative procedure identifies the independent ones
- WZCC can be studied separately in each sector
- $N_t = 0$. Usual terms, $-aE_4 + bW^2 + a'\nabla^2 R$
- N_t = 1. In principle 86 terms are possible, reduced to 3 independent by the iterative procedure, and reduced to 0 by the WZCC: no anomaly in the N_t = 1 sector

$$dn \wedge n = 0$$
,

The terms in the anomaly collapse from ∞ to 6

$$\mathcal{A} = \langle T_i^i - 2\epsilon^0 \rangle = bW^2 + \text{ local counterterms}$$

only one type B anomaly

(Auzzi, Baiguera, N., 2015; Arav, Chapman, Oz, 2016)

イロト イポト イヨト イヨト

E DQC

•

Explicit evaluation for a scalar (Auzzi and N., 2016)

$$\int d^{d+1}x \sqrt{g} \left\{ imv^{\mu} \left(\phi^{\dagger} D_{\mu} \phi - D_{\mu} \phi^{\dagger} \phi \right) - h^{\mu\nu} D_{\mu} \phi^{\dagger} D_{\nu} \phi - \xi R \phi^{\dagger} \phi \right\} \,,$$

$$\mathcal{D}_{\mu}\phi = \partial_{\mu}\phi - imA_{\mu}\phi, \ g = det(h_{\mu\nu} + n_{\mu}n_{\nu})$$

Conformal coupling:

$$\xi = \frac{1}{6}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ <200</p>

Heat kernel method

Heat kernel method:
$$\triangle = \triangle_t + \partial_i^2 = -2m\sqrt{-\partial_t^2} + \partial_i^2$$

 $e^{\triangle_t} = e^{-2m\sqrt{-\partial_t^2}} = \int_0^\infty \frac{d\sigma}{\sigma} \frac{m}{\sqrt{\pi\sigma}} e^{-\frac{m^2}{\sigma}} e^{-\sigma(-\partial_t^2)}$
In flat spacetime:
 $\langle x, t | e^{s\triangle} | y, t' \rangle = \frac{1}{2\pi} \frac{ms}{m^2 s^2 + \frac{(t-t')^2}{4}} \frac{1}{(4\pi s)^{d/2}} \exp\left(-\frac{(x-y)^2}{4s}\right)$

A relativistic (euclidean) scalar in D dimension would give:

$$\langle x|e^{s\Box}|y
angle = rac{1}{(4\pi s)^{D/2}}\exp\left(-rac{(x-y)^2}{4s}
ight)$$

$$ilde{\mathcal{K}}_{ riangle}(s) = \langle x,t|e^{s riangle}|x,t
angle = rac{2}{m(4\pi s)^{1+d/2}}$$

The same spectral dimension as relativistic scalar in d + 2dimensions !!

DQC

Heat kernel in curved spacetime

Seeley-DeWitt expansion:

$$ilde{K}_{M}(s) = rac{1}{s^{d/2+1}} \left(a_{0} + a_{2}s + a_{4}s^{2} + \ldots
ight) \, .$$

 a_4 is proportional to the Weyl anomaly

Result:

$$\langle T_i^i - 2\epsilon^0 \rangle = \frac{1}{8m\pi^2} \left(-\frac{1}{360} E_4 + \frac{3}{360} W^2 + \frac{1}{2} \left(\xi - \frac{1}{6} \right)^2 R^2 + \frac{1 - 5\xi}{30} \nabla^2 R \right) + \dots,$$

Giuseppe Nardelli Newton-Cartan trace anomaly and non-relativistic RG flow

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○

= 990

A Non-Relativistic anomaly can be obtained as IR limit of a Relativistic one?

A Non-Relativistic anomaly can be obtained as IR limit of a Relativistic one?

NO

- The conformal symmetries are indeed different in the two cases (z = 2 and z = 1). The relativistic trace anomaly coefficient counts the number of massless degrees of freedom, which is zero for a $z \neq 1$ fixed point
- The relativistic scale symmetry is *broken* by the mass gap necessary to have a non relativistic limit
- The non-relativistic scale symmetry is an IR emergent phenomenon which does not exist in the far relativistic UV

Consequence: the meaning of the non relativistic *a*-theorem (if it exists) is certainly different from the relativistic one

A free scalar contributes to the non-relativistic a-anomaly with

If the UV and IR fixed points contain just scalars, the non relativistic a-theorem would tell that:

$$\sum_{k}^{UV} \frac{1}{m_k} \ge \sum_{k}^{IR} \frac{1}{m_k}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Dar

- Try to check the conjecture in some examples
- Heat kernel calculation for fermions
- Is there any interesting SUSY story, as in a-maximization?
- Osborn: positivity of the metric is needed for a perturbative proof
- Non perturbative proof: what is the counterpart of the dispersion relations a la Komargodski and Schwimmer?
- What about anyons?

Thank you!

Giuseppe Nardelli Newton-Cartan trace anomaly and non-relativistic RG flow

<ロト <回 > < 回 > < 回 > < 回 > <

3