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Merger phases

(as in Begelman, Blandford & Rees 1980)
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Merger phases

e Dynamical friction (from ~100kpc to ~100 pc)
(tens of pairs AGN known)

- 5-10keV NiES
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(Decarli et al. 2010) (Green et al. 2010) (Piconcelli et al. 2010)



Merger phases

e Dynamical friction (from ~100kpc to ~100 pc)

e Dynamical friction
(from ~100 pc down to < binary formation)



Scales:

i.e., when (where) a binary forms
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Scales:

i.e., when (where) a binary forms
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... assuming the M-sigma relation (!!!)

ABHB 0.5 Mé{{QB’G PC.

Note: 0.5 pc ~ 1 mas @ z~0.03 (d~130 Mpc)



Merger phases

e Dynamical friction (from ~100kpc to ~100 pc)
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e Dynamical friction
(from ~100 pc down 2
to < binary formation)
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Merger phases

e Dynamical friction (from ~kpc to 100 pc)

e Dynamical friction
(from ~100 pc down to < binary formation)

e (Gravitational wave emission




From binary formation to GW:
three body interactions with stars

Gravitational
slingshot

Stars are (on average)
ejected with a net
energy gain (see, e.g.
Merritt 2013) -

the binary hardens
with time

WFPC2 captures a SMBH binary kicking stars out of the bulge

FiG. 7.— Cartoon showing a pair of supermassive black holes
kicking stars away as they dance towards coalescence at the centre
of a galaxy. Credit: Paolo Bonfini.

(actually taken from Graham arXiv:1501:02937)



From binary formation to GW:
three body interactions with stars

It has soon been realized that for heavy MBHs
there are not enough stars in the immediate
proximity of a binary, and that the refilling
through 2-body relaxation does not suffice



From binary formation to GW:
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: (Merritt, Mikkola & Szell 2007)
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Stellar perspective:
searching for efficient mechanisms
to refill the loss cone

Best candidates (to date):

Massive perturbers
(Perets & Alexander 2008)

Non-spherical potentials (leading to centrophilic orbits)
(e.g. Preto+ 2011, Vasiliev+ 2014, Sesana & Khan 2015, Gualandris+2017)

Non-static potentials
(very little done, e.g. Vasiliev+ 2014)



Stellar perspective: timescales
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(Gas perspective:

Approach 1: full merger simulations, following the

binary formation (and possibly a bit of the
hardening)

(e.g. Mayer+2007, Hopkins & Quataert 2010, Capelo+2015, Roskar+2015,
Chapon+2013,)

Approach 2: idealized initial conditions, to study

the gas-binary interaction
(e.g. Escala+05, Escala+06, Dotti+06, Cuadra+08, Roedig+12...)



MBHs growth through gas accretion




MBHs growth through gas accretion

Baby black hole, credits: ButterflyLovel.Etsy.com



MBHs growth through gas accretion
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Figure 1. Average Eddington ratios (left panel) and mass accretion rates (right panel) of MBHs as function of z. Black, red, green
and blue colors refer to MBH masses of 109, 107, 10%, and 10" Mg, respectively. The shaded areas show the range of values comprised
between the two limiting cases considered for the radiative efficiency (see discussion in the text) corresponding to € = 0.075 and € = (). 1.

(Dotti, Merloni & Montuori 2015, revisited from Merloni & Heinz 2008 )



(Gas perspective:

Approach 1: full merger simulations, following the
binary formation (and possibly a bit of the
hardening)

Approach 2: idealized initial conditions, to study
the gas-binary interaction

Timescales: idealized gas-binary interaction, with
a prescription for a mass and time dependent gas
inflow from the AGN luminosity function

(BBR1980, Dotti Merloni Montuori 2015)



The model in a nutshell

dLpus = —dLgas = —1ivdt /G M 7gap
LBHB = UV GM a

-
Roedig et al. 2012
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The model in a nutshell

| dLBHB — _dLgas = —mdt \/GMTgap
LBHB = UV GM a




Conservative assumptions:

» Mergers do not boost accretion

 Gas accretion always radiatively efficient and no
outtlows from the binary separation down to few
gravitational radii
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Timescales
Dotti et al. (2015)- Sesana & Khan (2015)

LISA: a=0

SNR=10
SNNR=100
SNR=1000




r [pc]
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What if...

Bonetti et al. (2016)-Bonetti et al. in prep.
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Conclusions

High z BHBs of any mass coalesce on very short
timescales

Low mass BHBs coalesce within z=0 even if binding
at low z (z=0.5 for M<10’ Msun — z=0.2 for M<10° Msun)
due to interaction with gas

Very massive BHBs can still merge... often hosted
in massive triaxial ellipticals, where non-collisional
loss cone refilling may play a role



Conclusions

High z BHBs of any mass coalesce on very short
timescales

Low mass BHBs coalesce within z=0 even if binding
at low z (z=0.5 for M<10’ Msun — z=0.2 for M<10° Msun)
due to interaction with gas

Very massive BHBs can still merge... often hosted
in massive triaxial ellipticals, where non-collisional
loss cone refilling may play a role

The fate of (many) BHBs is linked to the MBH
fueling/galaxy relaxation mechanisms!
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The model in a nutshell 2:

A fraction of the gas could manage

to cross the gap edge (the system is
not exactly axisymmetric, see e.g.

D'Orazio et al. 2013).

It also would exert a (different)
torque (e.g. Roedig 2012).
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It also would exert a (different)
torque (e.g. Roedig 2012).

What if only a fraction f of the gas
interacts dynamically with the
binary?




The model in a nutshell 2:

A fraction of the gas could manage
to cross the gap edge (the system is
not exactly axisymmetric, see e.g.
D'Orazio et al. 2013).

It also would exert a (different)
torque (e.g. Roedig 2012).

What if only a fraction f of the gas
interacts dynamically with the
binary?

Test: =0.4
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Stellar perspective:
searching for efficient mecha
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