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GWs in GR & beyond GR

Analytic
(BH perturbation theory)

"Analytic”

(Post-Newtonian) —l :
™~ inspiral
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Numerical relativity

@ Focus on inspiral (where we can make predictions in modified gravity theories)

@ Some general considerations on merger (if time allows),

@ A bit on ringdown tests (anyway possible only with third generation/space-based
detector, cf Berti, Sesana, EB, Cardoso, Belczynski 2016);

@ No propagation effects ( )
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Beyond GR: why?
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Beyond GR: why?
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@ Evidence for Dark Sector from systems with a < 107190 m/s?
~ ¢/Ho : need screening!
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@ Evidence for Dark Sector from systems with a < 107190 m/s?

~ ¢/Ho : need screening!



Lovelocks theorem

In a 4-dimensional spacetime, the only divergence-free symmetric rank-2 tensor constructed only from the

metric guv and its derivatives up to second differential order, and preserving diffeomorphism invariance, is
the Einstein tensor plus a cosmological term, i.e. Guy +A guy
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How to couple extra fields?

@ Satisfy weak equivalence principle (i.e. universality of free
fall for bodies with weak self-gravity) by avoiding
coupling extra fields to matter (i.e. no fifth forces at tree
level)

Sm (wmatte'ra g,uz/)

@ But extra fields usually couple non-minimally to metric, so
gravity mediates effective interaction between matter and
new field in strong gravity regimes (Nordtvedt effect)

@ Equivalence principle violated for strongly gravitating
bodies



Strong EP violations

For strongly gravitating bodies, gravitational binding energy gives large
contribution to total mass, but binding energy depends on extra fields!

Examples:

@ Brans-Dicke, scalar-tensor theories: S = / d%\;—g [993 5 w—(f ) 8,,,¢0"'99J
.

Getf ¢ GN/p, but ¢ in which star is immersed depends on
cosmology, presence of other star

@ Lorentz-violating gravity (Einstein-aether, Horava):
preferred frame exists for gravitational physics
gravitational mass of strongly gravitating bodies depends on
velocity wrt preferred frame

If gravitational mass depends on fields, deviations from GR motion
already at geodesics level

om,,

Lgnz, - 2“’ /\rrn’”((fp)ds uﬁvﬂ’(mnuy) iE O (877,) pi = 0(}9



Strong EP violations and GW emission

@ Whenever strong equivalence principle is violated, monopolar and
dipolar radiation may be produced

@ In electromagnetism, no monopolar radiation because electric charge
conservation is implied by Maxwell eqgs

@ In GR, no monopolar or dipolar radiation because energy and linear
momentum conservation is implied by Einstein eqs
e.qg. M; ~ /pm"dB.’I: h ~ %]Wl ~ %—E

C S

@ In GR extensions, effective coupling matter-extra fields in strong
gravity regimes m====> energy and momentum transfer between
bodies and extra field, monopolar and dipolar GW emission, modified
quadrupole formula

- G d G
h ~ ng ~ c—,dé(ml(go)wl mo(p)xs) ~ 50(31 — S9)
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@ Difficulty is to calculate sensitivities S

@ Since they are response to field boundary conditions, need
to calculate compact-object solution for different
boundary conditions

@ Calculation needs to be done exactly (no extrapolation of
weak field approximation) and (for NS) for different EOSS
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(Absence of) dipolar emission in binary pulsars

General Relativity prediction/
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(Absence of) dipolar emission in binary pulsars

An example: Lorentz-violating gravity
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(Absence of) dipolar emission in binary pulsars

An example: Lorentz-violating gravity
Yagi, Blas, EB & Yunes 2014
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(Absence of) dipolar emission in binary pulsars

@ Damour-Esposito-Farese scalar-tensor theory

y : 4 N w(“p) Ay v'
S —/ d4:13 5 |:L,.9R - —99—0”99()/ v’/‘] +S'm..(zr'f)'n'z,(z.ttera g;u/)

@ Generalizes Fierz-Jordan-Brans-Dicke by introducing linear coupling
3 between scalar and curvature, besides constant coupling o:

o~ aR+ BpR

@ Strongly non linear effects
inside NS (“spontaneous scalarization”)

Figure credits: Wex, private comm.



Dipolar emission in BH binaries?

@ Not present in Fierz-Jordan-Brans-Dicke-like theories (e.g.
Damour-Esposito-Farese theory) because R=0 in vacuum

o~ aR+ BpR

Loophole: non-trivial (cosmological) boundary conditions

@ But other curvature invariants do not vanish in vacuum, e.qg.
Kretschmann, Gauss-Bonnet, Pontryagin

' 1
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Dipolar emission in BH binaries?

@ Not present in Fierz-Jordan-Brans-Dicke-like theories (e.g.
Damour-Esposito-Farese theory) because R=0 in vacuum

o~ aR+ BoR

Loophole: non-trivial (cosmological) boundary conditions

@ But other curvature invariants do not vanish in vacuum, e.g.
Kretschmann, Gauss-Bonnet, Pontryagin

5= /d4:v\/——g [R+ %(Vc,o)2 -

*RE="R*"Ra.g%, @ K=R"SFR.7:

G = R?—-4R*®R.p + R**" R, p+s

¢ = fo(@)R+ fi(@)R? + f3(p)K + f3(p)*RR + f1(¢)G # 0




Caveats
S = / diz\/—g [R + 1(\7go)2 + fo(p)R

f, = const: same dynamics as GR (Gauss-Bonnet term is 4D topological invariant)
f, # const: dilatonic Gauss-Bonnet gravity, 2nd-order field eqs, no Ostrogradsky ghost)

In shift-symmetric dilatonic Gauss-Bonnet [fi(¢) = ¢], sensitivities (and thus dipole
emission) are zero for NS but NOT for BHs (EB & Yagi 2015, Yagi et al 2015)

More general theories (with extra vector or tensor dof’s) predict dipole emission
also (though not exclusively) in BH binaries



Constraints on dipolar emission
from direct detections

Weak bounds from
advanced detectors

Better for 3rd-gen detectors,

e.g. Lorentz violating gravity ., —— ko
(Hansen, Yunes, Yagl 2015;Yunes & OPN 05PN IPN 15PN 2PN 25PN 3PN  3.5PN

PN order

Chamberlain 2017)
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Also visible by eLISA if 6 links and 5 year mission!
(Sesana 2016, Amaro-Seoane & Santamaria 2009)

High-frequency noise is crucial!

Astrophysical stochastic background may screen
primordial ones
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Tests of BH-BH dipole emission

Eew = Egr 1.-|—B(
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@ Pulsar constrain [B| = 2 x 1072, GW150914-like systems + eLISA
will constrain same dipole term in BH-BH systems to comparable

accuracy

From EB, Yunes &
Chamberlain 2016
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HO W a b O u'l' m e rg e r? Inspiral (Merger

Possible surprises/
highly non-linear dynamics?

time

= supercomputers——kKnown-——»

Thorne

Need numerical-relativity simulations: prerequisite is that Cauchy problem be well-
posed (e.g. that egs be strongly hyperbolic, i.e. wave eqs)

@ True for FIBD-like scalar-tensor theories (i.e. with NO galileon terms), but GR
dynamics in vacuum (modulo boundary/initial conditions, mass term)

@ True in flat-space & spherical symmetry for Lorentz-violating gravity and
galileons; dynamics differs from GR both in vacuum and matter, but no general
formulation/simulations

@ Cauchy problem easier to formulate if theory interpreted as EFT (eg Chern-
Simons)



Smoking-qun scalar effects?

@ Earlier plunge than in GR for LIGO NS-NS sources, in DEF scalar-tensor theories

¢ full non-linear
-- 25PN with IS
— 2.5 PN with DS

«  QCO with DS

time [ms)

EB, Palenzuela, Ponce & Lehner 2013, 2014;
also Shibata, Taniguchi, Okawa & Buonanno 2014, 2015; Sennett & Buonanno 2016

@ Detectable with custom-made templates but also by ppE or “cut” waveforms
(Sampson et al 2015)

@ Caused by induced scalarization of one (spontaneously scalarized) star on the
other, or by dynamical scalarization of an initially non-scalarized binary



Spontaneous/dynamical scalarization
as "phase transitions”

Figure from Esposito-Farese, gr-qc/0402007



Can we learn something from BH-BH
GW detections without NR simulations?

@ Dynamics is perturbative in v/c
(as also shown by binary pulsars
and solar-system tests!)

@ In (some) theories with screening,

the PN expansion becomes NON-

05PN IPN 15PN 2PN 25PN 3PN 3.5PN per‘furba‘l'ive
PN order




Non-perturbative PN expansion
in Horndeski with Vainshtein mechanism

@ Vainshtein radius ry is effective size of point pass

@ If r, =2 ), we have a problem! (de Rham, Matas & Tolley 2012, Chu & Trodden
2013, EB & Yagi 2015)

@ WKB analysis predicts all multipole moments radiate with same strength in
binary systems (de Rham, Matas & Tolley 2012)



Esposito-Farése 2014
Kramer et al,, in prep

An example: acceleration-based
screening a la MOND
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gravity, e.g. TeVeS, generalized
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radiation in BH and NS binaries THEORIES

@ Intrinsically non-linear
dynamics: strong coupling
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GR at high accelerations
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(Future) ringdown tests

Tests of the no-hair theorem:

77 g — Vu(,m (]\/[, J)(1 4+ dwer)

Difficult with advanced detectors
because little SNR in ringdown
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Tests of no-hair theorem by BH ringdown
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Constraints on massive fields around spinning BHs

Isolated spinning BH + massive fields (e.g. light axion-like particles) with Compton
wavelength comparable to event horizon radius are unstable under superradiance

Mass and (mostly) angular momentum are transferred from BH to scalar condensate
surrounding BH on instability timescale; condensate then emits almost monochromatic

waves on timescale
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LISA, 4 years LIGO O2
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Brito, Ghosh, EB, Berti, Cardoso, Dvorkin,
Klein & Pani in prep.
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@ Deviations away from Kerr geometry near horizon (e.g. firewalls, gravastars, wormholes,
etc) can produce significant changes in QNM spectrum

@ Deviations take At ~ log[ro/(2M) — 1| to show up in time-domain signal because QNMs
generated at the circular null orbit (Damour & Solodukhin 2007, EB, Cardoso & Pani
2014, Cardoso, Franzin & Pani 2016) and coordinate time diverges on horizon

@ Need "matter” with high viscosity to explain absence of hydrodynamic modes;
possible with NS matter+large B, but not with boson stars (Yunes, Yagi & Pretorius 2016);

Schwarzschild BH of mass M+thin shell of 0.01 M at 1o

r/(GM/c?)
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Gaussian wavepacket initially at ISCO



Conclusions

GR extensions already tightly constrained by binary pulsars/ solar system

Direct GW detections push tests to more extreme regimes (strong
gravitational fields, relativistic velocities) and different objects

Perturbative effects are small and may require more detections

Non-perturbative “smoking-gun” effects may be present, probably first
detectable by parametrized fests if present



Conclusions

@ GR extensions already tightly constrained by binary pulsars/ solar system

@ Direct GW detections push tests to more ex’rremé regimes (strong
gravitational fields, relativistic velocities) and different objects

@ Perturbative effects are small and may require more detections

@ Non-perturbative “smoking-gun” effects may be present, probably first
detectable by parametrized tests if present

. "With great power comes
i@ great responsibility"
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