Simulation studies for dielectric wakefield programme on CLARA facility

Thomas Pacey

G. Xia, Y. Saveliev The Cockcroft Institute, STFC ASTeC, The University of Manchester

WG3, EAAC 2017

27th Sept 2017

- 1. Experiment overview
- 2. Dielectric structure design
- 3. Simulation studies
- 4. Summary

Experiment Overview

'Coffin' experimental chamber

Martin-Puplet interferometer

See talk by Y. Saveliev for more information

Chamber output window

Mounted DLW structure

Tunable DLW structure

DLW: Structure design

- Quartz wafers used for dielectric.
- Not ideal material, but it is readily available and can be machined to fit required dimensions.
- For all cases $\varepsilon_r = 3.8$ and is non-dispersive and isotropic.
- Analytical wakefield treatment from [1]

[1] Tremaine, A., J. Rosenzweig, and P. Schoessow. , *PhysRev E* 56.6 (1997): 7204.

Tunability of fundamental mode for thin dielectric

DLW: Wakefield mode spectra

Generalised DLW analysis from [2], Gaussian bunch with σ_{t} = 250fs

Field profiles in thin dielectrics

Simulations - A tale of two codes

- Impact-T:
 - ES PIC for space charge, with analytic approach to DLW wakefield modelling
 [3]
 - Free, fast, simple to use, run locally
 - Good for quick parameter scans
 - Longitudinal effects validated against
 VSim in [3]
 - Fixed weight macros
- Started out here

[3] Mihalcea, D., et al. PR:STAB 15.8 (2012): 081304.

• VSim:

- Full EM-PIC solve for beam-structure dynamics [4]
- Flexible code, add additional physics
- More accurate over wider range of bunch parameters
- Moving simulation window improves speed
- Fixed or variable weight macros
- Focus of future work

[4] Nieter, Chet, and John R. Cary. , J COMPUT PHYS,196.2 (2004): 448-473

Expected Bunch Parameters

Idealised case, 6D Gaussian Beam:

E = 45 MeV

 $\sigma_{\rm t}$ = 250 fs

σ_{x,y} = 100 μm

σ_E = 1% - Linear Chirp, dogleg compression ε_{x,y} = 10 μm

Example LPS for CLARA BA1 beam

Results

- Comparison of codes
 - Validation of transverse effects in ImpactT
 - Transversely cold beams
- Looking at both longitudinal & transverse effects
- Vary structure aperture
- Focus on what is measurable

Longitudinal Phase Space change

48

47

[A9W] 3

44

43

41

40 [AaW] 3

44

43

-300-200-100 0

-300-200-100 0

Large acceleration in tail

δz [µm]

Initial

a = 100um

100 200 300

100 200 300

0.020

0.015

0.010

0.005

0.020

0.015

0.010

0.005

0

0

VSim Final

δz [µm]

Impact-T Final

Measurable Longitudinal Effects

Some disagreement between ImpactT and VSim, requires further investigation

Here acceleration of tail reduces energy spread - potential 'positive' dechirper

Transverse Phase Space

a = 100um

a = 250um

Transverse profiles - immediately after DLW

Transverse Profiles: Drift transport to YAG @ 1.5m

The future: Dechirper for CLARA

Acknowledgement

Thanks to:

D. Mihalcea at Fermilab and J. Qiang at LBNL for their assistance in running Impact-T and the DLW wakefield package

&

J. Smith at Tech-X for assistance with VSim and HPC

- Thin dielectric layers will allow us to study wakefield tunability
- Possibility to experimentally test a 'positive' dechirper
- Good qualitative agreement between two codes
- Need to verify transverse effects for CLARA dielectric dechirper

WG Summary Slide

- We are very close to starting DWA experiments at CLARA at Daresbury.
- Use thin dielectric layers in a tunable rectangular structure.
- This will maximise tunability, allowing investigation of changes in
 - Wakefield frequency spectra
 - Longitudinal dynamics
 - Transverse dynamics
- Reasonable parameter space gives us lots to investigate in terms of drive beam dynamics for an accelerator, or passive components like a dechirper for FELs.

