# Plasma sources for laser- and beam-driven plasma accelerators

Simon Hooker Department of Physics & John Adams Institute University of Oxford



A very big thank you to everyone who sent me slides, photos, and thoughts including:

- Félicie Albert, Lawrence Livermore National Laboratory
- Brigitte Cros and Thomas Audet, Université Paris-Sud
- Jérôme Faure, CNRS & Ecole Polytechnique
- Spencer Gessner, SLAC (now at CERN)
- Leo Gizzi & Paolo Tomassini, INFN, Pisa
- Mark Hogan, SLAC
- Dino Jaroszynski, University of Strathclyde
- Andi Maier, University of Hamburg & CFEL, DESY
- Patric Muggli, Max-Planck-Institut f
  ür Physik
- Jens Osterhoff and Lucas Schaper, DESY
- Matthew Streeter, Lancaster University









- What would we like the plasma source to do?
- An overview of existing sources
- Challenges and conclusions







#### What would we like?

#### **Common requirements**

- Well-defined & controllable density
- Some degree of longitudinal uniformity
- Reproducibility
- Long operating lifetime
- Controllable transverse profile? (e.g. hollow channel)
- Accessible to diagnostics
- Limited gas load to rest of system
- Minimization of unwanted secondary beam generation (e.g. bremsstrahling)
- Others ...?

Simon Hooker University of Oxford EAAC, Elba, 24 - 30 Sep 2017





#### **Common requirements**

- Well-defined & controllable density
- Some degree of longitudinal uniformity
- Reproducibility
- Long operating lifetime
- Controllable transverse profile? (e.g. hollow channel)
- Accessible to diagnostics
- Limited gas load to rest of system
- Minimization of unwanted secondary beam generation (e.g. bremsstrahling)
- Others ...?

#### Laser-driven

- Sharp entrance/exit boundaries
- Possibly, laser guiding
- Possibly, control of longitudinal profile ("tapering")
- Others ...?





#### **Common requirements**

- Well-defined & controllable density
- Some degree of longitudinal uniformity
- Reproducibility
- Long operating lifetime
- Controllable transverse profile? (e.g. hollow channel)
- Accessible to diagnostics
- Limited gas load to rest of system
- Minimization of unwanted secondary beam generation (e.g. bremsstrahling)
- Others ...?

#### Laser-driven

- Sharp entrance/exit boundaries
- Possibly, laser guiding
- Possibly, control of longitudinal profile ("tapering")
- Others ...?

#### **Beam-driven**

 Possibly, provision of laser pulse for ionization



# Gas jets





- Plasma density controlled by varying backing pressure behind jet -
  - 10 100 bar depending on nozzle diameter and desired density
- *n*<sub>e</sub> typically 10<sup>17</sup> 10<sup>20</sup> cm<sup>-3</sup>
- Length typically few mm
- Supersonic nozzles provide near-flat-top density profile & sharper boundaries









- Plasma density controlled by varying backing pressure behind jet -
  - 10 100 bar depending on nozzle diameter and desired density
- *n*<sub>e</sub> typically 10<sup>17</sup> 10<sup>20</sup> cm<sup>-3</sup>
- Length typically few mm
- Supersonic nozzles provide near-flat-top density profile & sharper boundaries











- Plasma density controlled by varying backing pressure behind jet -
  - 10 100 bar depending on nozzle diameter and desired density
- *n*<sub>e</sub> typically 10<sup>17</sup> 10<sup>20</sup> cm<sup>-3</sup>
- Length typically few mm
- Supersonic nozzles provide near-flat-top density profile & sharper boundaries









## Gas jet: kHz laser-driven accelerator



Thanks to: J. Faure (LOA, Ecole Polytechnique)

- Low pulse energy ⇒ tight focus, short length
- High rep-rate ⇒ small mass flow required
- Gas jet:
  - nozzle dia. < 100 μm</li>
  - Sharp boundaries to avoid refraction







- Low pulse energy ⇒ tight focus, short length
- High rep-rate ⇒ small mass flow required
- Gas jet:
  - nozzle dia. < 100 μm</li>
  - Sharp boundaries to avoid refraction



- Sharper gradients
- Higher n<sub>e</sub> above 100 µm (less nozzle damage)



# Gas jet: kHz laser-driven accelerator



- Low pulse energy ⇒ tight focus, short length
- High rep-rate ⇒ small mass flow required
- Gas jet:
  - nozzle dia. < 100 μm</li>
  - Sharp boundaries to avoid refraction





#### Gas jets give good diagnostic access

Thanks to Stuart Mangles, Imperial College London







#### Gas jets give good diagnostic access

Thanks to Stuart Mangles, Imperial College London







 Control of longitudinal profile possible by introducing blades and/or additional gas sources:

ohn Adams Institute for Accelerator Science

- K. Schmid *et al. PRSTAB* **13** 091301 (2010).
- M. Hansson et al. PRSTAB 18 071303 (2015).
- C. Thaury *et al. Sci. Rep.* **1** 16310 (2015).
- E. Guillaume *et al. PRL* **115** 155002 (2015).



Simon Hooker University of Oxford EAAC, Elba, 24 - 30 Sep 2017

UNIVERSITY OF

# Gas cells



Gas cells

- Region of uniform neutral gas contained by differential pumping through coaxial pinholes
- Density fairly uniform between pinholes...
  - but plume of gas from front and back of cell
- Density easily adjusted by controlling gas flow
  - but erosion of pinholes will change density
- Several groups have designed variable length gas cells







#### **Examples of gas cells**

Thanks to: Stefan Karsch Munich Centre for Advanced Photonics





OpenFoam simulations show uniform density within cell & extent of plumes









#### Disposable gas cells

 Gas cell made by 3D printing





Simon Hooker University of Oxford EAAC, Elba, 24 - 30 Sep 2017





- Highly homogeneous region between gas slots
- No shocks or turbulence
- Reproducible when pulsed
- Low gas load at continuous flow
- Reduces turbulence caused by nonreproducible gas valve









# A gas cell for a beam-driven accelerator



Thanks to: J. Osterhoff & L. Schaper, DESY

#### **FLASHForward** experiment

#### **Design requirements:**

- No emittance spoilers
- Full transverse (optical) probing
- Supporting multiple injection scenarios
- Easily replaceable (8h)
  - Limited access to FLASH2 tunnel
  - No contamination of FLASH vacuum
- Plasma density
  - Acceleration: up to 5 x 10<sup>17</sup> cm<sup>-3</sup>
  - Injection: up to 5 x 10<sup>18</sup> cm<sup>-3</sup>





# A gas cell for a beam-driven accelerator





EAAC, Elba, 24 - 30 Sep 2017



# A gas cell for a beam-driven accelerator





Thanks to: J. Osterhoff & L. Schaper, DESY

#### **FLASHForward** experiment

#### Target concept:

- Laser ionized
- Gas filling
  - Separate pressure control
  - Multiple species operation
  - Localised density peak and downramp possible
- Continuous gas flow design
  - No windows required
  - Compatible with FLASH vacuum standards
- Transverse access







- Maximum continuous gas flow of
   20 mbar l/s hydrogen into main chamber
  - at beamline intersection to FLASH2 pressure has to be < 10-8 mbar
  - additionally to main chamber 3 differential pumping sections in beam-line
  - efficient for pumping: small diameter pipes, bending magnet

#### Pumping speeds required:

- Experimental chamber:
  - 2500 l/s turbo pump, 450 m3/h backing pump
- First stage:
  - 600 l/s turbo pump, 35m3/h backing pump
- Second stage:
  - 600 l/s turbo pump, 35m3/h backing pump
- Third stage:
  - 450 l/s turbo backed by 300l/s turbo, 35m3/

h backing pump



# Heat-pipe ovens & similar



Many <u>beam-driven</u> plasma accelerators require:

- Long targets (metre scale)
- Relatively low density  $n_e = 10^{14} 10^{16} \text{ cm}^{-3}$
- Ionizable by drive beam or a laser pulse ( $\Rightarrow$  low-Z target)
- Minimize ionization by collisions with driver ( $\Rightarrow$  low-Z target)
- In some cases, high uniformity





#### FACET Experiments Use Meter Scale Plasmas: Laser or Beam Field Ionization, Alkali Metal Vapour or Hvdrogen Gas





#### AWAKE plasma source

#### Source requirements

- ▶  $10^{14} \le n_e \le 10^{15} \text{ cm}^{-3}$  ( $k_p \sigma_r ≈ 1$ )
- >  $\Delta n_{\rm e} < 0.2\%$  (SSM & acceleration)
- Length several metres
- Few cm ramp (electron trapping)
- Seed for self-modulation



Thanks to: P. Muggli (MPP), E. Oz (MPP), F. Batsch (MPP), F. Braunmuller (MPP), R. Kersevan (CERN), G. Plyushchev (CERN/MPP/EPFL), J. Moody, M. Huether, MPP, V. Fedosseev, F. Friebel, CERN

#### Rb vapour source (not heat-pipe oven)

- $h_{e} = n_{Rb}$
- Laser ionized
  - EI = 4.177 eV
  - *I*<sub>th</sub> = 1.7 × 10<sup>12</sup> W cm<sup>-2</sup>
- Impose very uniform T
  - $\delta n_{Rb} / n_{Rb} = \delta T / T < 0.2\%$
- ▶ 160 °C ≤ T ≤ 220 °C for  $10^{14} \le n_{Rb} \le 10^{15}$  cm<sup>-3</sup>
- Control Rb gradient with Rb source temp
- Short scale length: heat-pipe design
- n<sub>Rb</sub> measured at each end by white light

interferometry Simon Hooker University of Oxford EAAC, Elba, 24 - 30 Sep 2017











# Plasma sources with controlled transverse profile

# Why is control of transverse profile important?

- For LWFA, guiding of the drive pulse
- Transverse variation of n<sub>e</sub>:
  - Causes phase differences between on- and off-axis wake oscillations
  - Affects relation between accelerating and focusing phases
  - N. E. Andreev et al. PoP 4 1145 (1997)
- Hollow plasma channels
  - Have uniform acceleration gradients, independent of transverse profile of driver
  - Weak, linear focusing forces
  - T. C. Chiou & T. Katsouleas PRL 81 3411 (1998)
  - C. B. Schroeder et al. PRL 82 1177 (1999)
- Near-hollow channels
  - Independent control of focusing & accelerating forces
  - C. B. Schroeder *et al. PoP* **20** 080701 (2013).







# **FACET: Generation** of hollow plasma channels





- High-order Bessel beam formed by kinoform
- Ionizes Li vapour in heat-pipe to form annular plasma (with unionized gas on axis)

Thanks to: S. Gessner

(SLAC, now @ CERN)

- Ti:sapphire laser: 34 mJ, 100 fs
- $n_{\rm Li} = 8 \times 10^{16} \, {\rm cm}^{-3}$
- Oven 130 cm long



# **EACET**: Generation of hollow plasma channels





Thanks to: S. Gessner (SLAC, now @ CERN)

- Method extended to gas cells
  - Direct observation of channel profile
  - Can use a high-charge drive beam without field ionization by beam
- But...
  - Gases more difficult to ionize
  - Self-phase modulation can affect laser pulse





#### Waveguides

Accelerating field : $E_z \propto \omega_p \propto \sqrt{n_e}$ Dephasing length : $L_d \approx \frac{\lambda_p^3}{\lambda^2} \propto \frac{1}{n_e^{3/2}}$ Energy gain : $\Delta W = E_z L_d \propto \frac{1}{n_e}$ 

- Laser-driven plasma accelerators need the driving pulse to be guided since Rayleigh range is typically only few mm
- Relativistic and ponderomotive effects greatly increase interaction length without external waveguide
- Waveguides come in two types:
  - Step-index waveguides (hollow capillaries)
  - Gradient refractive waveguides: Plasma channels







#### **Step-index: hollow capillaries**



Operation in a large parameter range:

- Inner diameter: 50 500 μm,
- Glass walls: optically smooth
- Length : limited by laser damping length (several meters for 100µm diameter capillary)
- Laser intensity: the main limitations are due to poor beam quality and stability
- Gas : H2 to control the density easily (laser ionisation)
- ▶ Gas pressure control: 0-500 mbar, pulsed (1shot /10s).





#### Hollow capillaries: Progress

Thanks to: Brigitte Cros & Thomas Audet LPGP, CNRS-Université Paris-Sud





- Stable gas confinement (measurement by interferometry and fluid simulations)
  - J. Ju et al. J. Appl. Phys. **112** 113102 (2012)
- Laser wakefield acceleration in capillary tubes to ~ 300 MeV:
  - J. Ju *et al. Phys Plasmas* **20** 083106 (2013). F. G. Desforges *et al. Nucl. Instr. Meth. A* **740** 54 (2014)
  - M. Hansson et al. Phys. Rev. STAB **17** 031303 (2014).
- Use of capillary exit as pinhole for imaging of radiation and diagnostic of electron acceleration:
  - J. Ju *et al. Phys. Plasmas* **20** 083106 (2013)
  - J. Ju et al. Phys. Rev. STAB **17** 051302 (2014)





#### Hollow capillaries: Progress









 Simulations show acceleration of externallyinjected electrons up to 10 GeV



#### **Gradient refractive index guiding**









#### **Gradient refractive index guiding**

Laser beam will be focused if the refractive index decreases with distance from axis



- Plasma channel: transverse variation of <sup>x</sup> electron density gives correct refractive index profile
- Lowest-order mode of parabolic channel is Gaussian...
- ... but shape of channel is not very important: matched spot size mainly determined by channel depth.
  - See Durfee *et al. Opt. Lett.* **19** 1937 (1994)

 $\eta = \sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2}$   $\approx 1 - \frac{1}{2} \frac{n_e(r)e^2}{\gamma m_e \epsilon_0 \omega^2}$ Parabolic channel:  $n_e(r) = n_e(0) + \Delta n_e \left(r/r_{ch}\right)^2$   $W_M = \left(\frac{r_{ch}^2}{\pi r_e \Delta n_e}\right)^{1/4}$ 





#### Plasma channels generated by discharges



Imperial College, London





- Open discharges
  - N. C. Lopes et al. *Phys Rev E* 68 035402 (2003).
  - R. Bendoyro, at al., *IEEE Trans. Plasma* Science 36 1729 (2008)
- Ablated capillary discharges
  - Y. Ehrlich et al. *Phys Rev Lett* **77** 4186 (1996).
  - D. Kaganovich *et al. Phys Rev E* **59** R4769 (1999).
  - D. Kaganovich *et al. Appl. Phys. Lett.* **78** 3175 (2001).
- Gas-filled capillary discharges
- Fast capillary discharges
  - Hosokai *et al. Opt Lett* **25** 10 (2000).





# Gas-filled capillary discharge waveguides







Evolution of plasma channel during discharge pulse







# Gas-filled capillary discharge waveguides







Evolution of plasma channel during discharge pulse







#### **Progress with CDWs**



- Demonstration of guiding
  - A.Butler et al. PRL 89 185003 (2002)
- Laser machining of capillaries
  - D.A. Jaroszynski *et al. Phil. Trans. Roy. Soc. A* 364 689-710 (2006)
  - S. M. Wiggins *et al. Rev. Sci. Inst.* **82** 096104 (2011).
- Scaling laws for channel properties
  - A. J. Gonsalves et al. PRL 98 025002 (2007)
- Modelling of discharge
  - N.A. Bobrova *et al. PRE* **65** 016407 (2002)
  - B. H. P. Broks *et al. PoP* **14** 023501 (2007)
  - B. H. P. Broks *et al. PRE* **71** 016401 (2005).
  - G. Bagdasarov et al. PoP **24** 053111 (2017).
- Generation of GeV beams
  - W. P. Leemans *et al. Nat. Phys.* **2** 696 (2006)





#### **Progress with CDWs**



- Demonstration of guiding
  - A.Butler et al. PRL 89 185003 (2002)
- Laser machining of capillaries
  - D.A. Jaroszynski *et al. Phil. Trans. Roy. Soc. A* 364 689-710 (2006)
  - S. M. Wiggins *et al. Rev. Sci. Inst.* **82** 096104 (2011).
- Scaling laws for channel properties
  - A.J. Gonsalves et al. PRL 98 025002 (2007)
- Modelling of discharge
  - N.A. Bobrova *et al. PRE* **65** 016407 (2002)
  - B. H. P. Broks *et al. PoP* **14** 023501 (2007)
  - B. H. P. Broks *et al. PRE* **71** 016401 (2005).
  - G. Bagdasarov *et al. PoP* **24** 053111 (2017).
- Generation of GeV beams
  - W. P. Leemans *et al. Nat. Phys.* **2** 696 (2006)





A. J. Gonsalves et al. Nat. Phys. 7 862 (2011)



Incorporation of gas jet to control injection

- Channel length increased to 90 mm
  - 4.2 GeV electron beams generated
  - Guiding observed for  $n_{\rm e0} \ge 2 \times 10^{17} \, {\rm cm}^{-3}$

- Repetition rate increased to 1 kHz
- Laser heating of channel to decrease n<sub>e0</sub> and WM
  - N. A. Bobrova *et al. PoP* **20** 020703 (2013)



#### Hydrodynamically-generated plasma channels





Krushelnick et al. PRL 78 4047 (1997)



- Hydrodynamic expansion
  - C. G. Durfee & H. M. Milchberg, *Phys Rev Lett* **71** 2409 (1993).
  - T. R. Clark & H. M. Milchberg, *Phys Rev E* 61 1954 (2000).
  - V. Kumarappan, *et al. Phys Rev Lett* **94** 205004 (2005).
- Ponderomotive channels
  - K. Krushelnick *et al. Phys Rev Lett* **78** 4047 (1997).

- Colliding gas flows
  - D. Kaganovich *et al. Appl Optics* **54** F144 (2015).





Kaganovich et al. Appl. Opt. 54 F144 (2015)



# Plasma channels: hydrodynamic expansion

- Create & heat column of hot plasma
  - ~ 100 ps laser pulse creates and heats plasma
- Expansion into surrounding cold gas / plasma drives cylindrical blast wave
- Plasma channel formed within expanding shell
- Attractive for high repetition rates since "indestructible"
- Extensively studied
  - C. G. Durfee & H. M. Milchberg, *Phys Rev Lett* **71** 2409 (1993).
  - T. R. Clark & H. M. Milchberg, *Phys Rev E* 61 1954 (2000).
  - "Ignitor-heater" : P. Volfbeyn et al. PoP 6 2269 (1999).







- Requirement for rapid collisional heating limits on-axis density to  $ne(0) \ge 5 \times 10^{18}$ cm<sup>-3</sup>
- Using clustered gases can reduce this to  $ne(0) \ge 1 \times 10^{18} \text{ cm}^{-3}$ 
  - V. Kumarappan *et al. PRL* **94** 205004 (2005)



0.03 ns

(b) ---- 0.20 ns 0.70 ns ..... 50 1.03 ns 1.70 ns 00 2.37 ns .... 3.03 ns ••• 3.70 ns Evolution of plasma density (10<sup>18</sup> cm<sup>-3</sup>) in clustered Ar gas jet (113K, 20 bar) 200 300



Simon Hooker University of Oxford EAAC, Elba, 24 - 30 Sep 2017

 $\mu \mathbf{m}$ 

# OFI-heated hydrodynamic plasma channels

- Optical field ionization gives
  - Hot electrons & cold ions
  - Electron energy controlled by polarization
- ▶ Heating independent of density ⇒ low density channels







# OFI-heated hydrodynamic plasma channels

- Optical field ionization gives
  - Hot electrons & cold ions
  - Electron energy controlled by polarization
- ▶ Heating independent of density ⇒ low density channels
- ► HELIOS simulations show channels with  $ne(0) \approx 7 \times 10^{17} \text{ cm}^{-3}$





See poster by Chris Arran, Wed 19:30

| <b>HELIOS</b> simulations |                                       |  |  |  |  |
|---------------------------|---------------------------------------|--|--|--|--|
| <b>п</b> н:               | 3 × 10 <sup>18</sup> cm <sup>-3</sup> |  |  |  |  |
| $E_{L}$ :                 | 50 mJ                                 |  |  |  |  |
| т:                        | 50 fs                                 |  |  |  |  |
| L <sub>chan</sub> :       | 600 mm                                |  |  |  |  |



# **OFI-heated hydrodynamic plasma channels**

- Optical field ionization gives
  - Hot electrons & cold ions
  - Electron energy controlled by polarization
- ▶ Heating independent of density ⇒ low density channels
- HELIOS simulations show channels with ne(0) ≈ 7 × 10<sup>17</sup> cm<sup>-3</sup>
- Confirmed in preliminary experiments with lens focus



See poster by Chris Arran, Wed 19:30

| HEL         | <b>IOS</b> simulations                |
|-------------|---------------------------------------|
| <b>п</b> н: | 3 × 10 <sup>18</sup> cm <sup>-3</sup> |
| $E_{L}$ :   | 50 mJ                                 |
| т:          | 50 fs                                 |
| Lchan       | : 600 mm                              |
|             |                                       |





| Class:                        | Non-guiding |      |           | Waveguides |            |     |                    |
|-------------------------------|-------------|------|-----------|------------|------------|-----|--------------------|
| Source:                       | Jet         | Cell | Cap. Cell | Vap. Oven  | Hollow cap | CDW | Hydro<br>expansion |
| <i>n</i> e / cm <sup>-3</sup> |             |      |           |            |            |     |                    |
| L/mm                          |             |      |           |            |            |     |                    |
| <i>W</i> <sub>M</sub> / μm    |             |      |           |            |            |     |                    |
| Gas load                      |             |      |           |            |            |     |                    |
| Lifetime                      |             |      |           |            |            |     |                    |
| Rep. rate                     |             |      |           |            |            |     |                    |
| Homog.?                       |             |      |           |            |            |     |                    |
| Ramps?                        |             |      |           |            |            |     |                    |
| Reproduce?                    |             |      |           |            |            |     |                    |
| Long.<br>profile?             |             |      |           |            |            |     |                    |
| Trans.<br>profile?            |             |      |           |            |            |     |                    |
| Diag. access                  |             |      |           |            |            |     |                    |

Yes / Good / High

Not known / Medium

No / Difficult

John Adams Institute for Accelerator Science

- Many factors must be considered when designing the plasma source
- Wide range of solutions have been developed
- Important issues & future challenges
  - Operation at lower densities and over longer lengths
  - Control of longitudinal profile (controlling injection, reduce emittance growth)
  - Improved control of transverse profile (e.g. hollow channels)
  - Long operating life
  - Operation at high repetition rates
  - Reducing gas load to rest of system (affects repetition rate)
  - Reducing/avoiding unwanted background from interaction with structure (e.g. bremsstrahlung)















