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 protons / ions

aim:

to develop laser-driven sources of high energy protons, ions (and gammas) 

as a reliable, generic technology for applications

• physics of laser driven radiation sources and their possible applications

• High energy phenomena and transport

• Knowledge of physics has impact on:

1. fundamental physics – cosmology

2. high-field laser physics 

3. fusion

4. light and particle sources 

• Laboratory astrophysics

General interest in the field

ion acceleration
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what will bring the laser development in the near future?

Andrea Macchi, Marco Borghesi, and Matteo Passoni: Rev. Mod. Phys., Vol. 85, No. 2 (2013)



1. To achieve high proton energies via laser and target parameters optimisation,.

2. Scaling and optimisation of proton beams driven by TNSA mechanism for applications.

Research Goals

 TNSA regime - is the only virtually stable and reliable way to accelerate ions

using PW, short laser pulse for ion acceleration

We aim to investigate:

- irradiation conditions

- proton acceleration

- proton source and beam properties
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𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 > 1012: 1 𝑎𝑡 𝑛𝑠
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proton beams for applications
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back reflex of PW, fs laser pulse at oblique incidence on the target 

The energy and the spectrum of back reflected radiation were monitored throughout the experiments

(0.1 - 1.2)×1021 W/cm2

𝑨𝒍 targets:

Ter-Avetisyan et al., Opt. Express 24, 28104 (2016).
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scales are normalized on 𝑛𝑒 = (8×1023 cm-3)

𝐼 = 2×1021 W/cm2 in 4 µm, 30 fs, Gaussian, p- pol., 

target - 2 µm Al+13

incident angler 30 degree,

no pre-plasma

(simulation by Alexander Andreev)

5.3 fs 16 fs 21fs

electron density profile on the target during the laser pulse 

32 fs

PIC simulations have demonstrated:

- due to the light pressure the reflecting surface is curved 

- the generation of regular structure in the electron density profile. 

This structure can act as a grating and a significant amount of laser energy is reflected back 

2D PIC simulations



10
18

10
19

10
20

10
21

1E-3

0.01

0.1

1
 6 m experiment

 0.2 m experiment

 2 m simulation

 0.2 m simulation

c
o
e

ff
ic

ie
n

t 
o
f 
b
a

c
k
 r

e
fl
e

c
ti
o
n

laser intensity (W/cm
2
)

10 20 30 40 50 60
1E-3

0.01

0.1

1
 preplasma scalelength L=0

 preplasma scalelength L=200 nm

 

 

c
o
e

ff
ic

ie
n

t 
o
f 
b
a

c
k
 r

e
fl
e

c
ti
o
n

 

incident angle (

)

the grating period 𝑑 = 𝜆/𝑠𝑖𝑛𝜃 gives the diffraction peak of second order (𝑛 = 2)

in the backward direction.

back reflection coefficient vs

incident angle on the target

back reflection coefficient, 

0.2 and 6 m 𝑨𝒍 targets 

The observed phenomena can have serious consequences when using PW laser systems 

in the interaction experiments. 

back reflection coefficient

Ter-Avetisyan et al., Opt. Express 24, 28104 (2016).
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 proton ion acceleration
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proton acceleration by High contrast, relativistic laser pulse

a0, λ, ωL

θ

 The electrostatic field within the positively charged cavity crated at the 
target front accelerates the ions to high energy

Bychenkov, et al., Ter-Avetisyan, Phys. Plasmas, 24, 010704(6) (2017)



• Rear side protons energy scaling 

• Front side energy scaling

• It is also unclear why the intensity scaling is different when 

the focusing is changed and the energy is changed (??)

• almost independent on target thickness(??)

I 1

I 0.5

There is still life in the established TNSA mechanism

conclusions



6 µm Al foil mesh RCF stacks 

3.7 mm 26.3 mm

Proton beam

6.5 MeV 7.3 MeV 8.1 MeV 8.9 MeV
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 proton source and beam properties



• propagation of protons is ballistic 
• no ion interaction within the beam

unique virtual Source 

𝑧
𝑥

𝑦

for any projection imaging experiments, e.g., in proton radiography or deflectometery, 

source size largely affects the spatial resolution of the image

• the size and relative change of “virtual source” position dependant on proton energy

3 MeV 4 MeV 6 MeV5 MeV

25 m 20 m 10 m 8 m



emission characteristics along and perpendicular to the laser polarisation direction:

the emittance of the beam is preserved in the whole measured spectral range 

in laser polarisation direction: 

• the proton beams at different energies have the same divergence. 

in perpendicular to laser polarisation direction: 

• the divergence is increasing when particle energy is increasing.

the protons “virtual source” position was changing towards to the target when 

particles energy is increased. 

These findings show the complex dynamic of the ion acceleration process which 

differs in parallel and perpendicular to laser polarisation direction. 

Mesh image as a pepper pot emittance probe was used to measure the transverse 

emittance of the ion beams: 

𝜺𝒏𝒕 < 0.05 π mm mrad
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the momentum distribution of protons in phase space

at the distance 50 m from the target 

• the protons with different energies exhibit different transverse momentum 
and therefore different divergence

• During further propagation the transvers momentum stays unchanged.

simulated proton image 

of the mesh 

• mesh image formed by 
4 MeV and 9 MeV    
beams are the same
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Fig. 5. 

 temporal evolution of the transvers and longitudinal electric fields created 
by electron cloud around proton beam

• The transvers electric field at any time step is weak 

• longitudinal electric contributes to the divergence of the beam
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the duration of proton bunch is increased during the propagation 

• the proton bunch width is shown for different energies 

at early time: 

a rapid increase of particles 

momentum takes place at later time:

the particles momentum becomes 

constant and bunch is expanding by 

their TOF

 high energies are affected more that low energies 



particles trajectories are ray-traced from their given momentum values
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conclusions

Further development of “proton deflectometry” 

for continuous and 3D recording 

of transient plasma fields

with sub-ps temporal resolution

 the ultra-short burst duration ensures - high temporal resolution (ps), 

 the laminarity, ultra-low emittance and small source size - high spatial resolution (µm)

 moving source, which exhibit also different characteristics dependent on laser 

polarization direction may affect the quantitative analyses of the data

in the determination of the field evolution 


