HIGH-BRILLIANCE BETATRON GAMMA-RAY SOURCE POWERED BY LASER-ACCELERATED ELECTRONS

J. FERRI^{1,2,3}, S. CORDE³, A. DÖPP⁴, A. LIFSCHITZ³, A. DOCHE³, C. THAURY³, K. TA PHUOC³, B. MAHIEU³, I. ANDRIYASH⁵, V. MALKA^{3,6}, X. DAVOINE²

 ¹Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden ²CEA DAM DIF, 91297 Arpajon, France
 ³LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, 91762 Palaiseau, France
 ⁴Ludwig-Maximilians-Universität München, Fakultät für Physics, Am Coulombwall 1, Garching 85748, Germany
 ⁵Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette, France

⁶Department of Physics and Complex Systems, Weizmann Institut of Science, Rehovot, Israel

EAAC, 26 September 2017

CHALMERS UNIVERSITY OF TECHNOLOGY

| PAGE 2

- **One stage acceleration**: impossible to both optimize electron energy and density.
 - Compromize has to be found in the experiment
- **Our proposition**: Decouple electron acceleration and X-ray emission in two different stages.

• **One stage acceleration**: impossible to both optimize electron energy and density.

Compromize has to be found in the experiment

• **Our proposition**: Decouple electron acceleration and X-ray emission in two different stages.

• **One stage acceleration**: impossible to both optimize electron energy and density.

• Compromize has to be found in the experiment

• **Our proposition**: Decouple electron acceleration and X-ray emission in two different stages.

A TWO-STAGE SCHEME FOR BETATRON EMISSION

CHALMERS

1st stage: low density, electron acceleration

 Laser wakefield, blowout regime

 2nd stage: high density, X-ray emission

 Plasma wakefield

1ST STAGE: LWFA WITH A 0.5 PW LASER

1st **stage**: Laser wakefield acceleration of electrons (CALDER-Circ, ~ 1.5 cm)

Scaling laws of the blowout regime

PARAMETERS

$$E_0 = 15 \text{ J}$$
 $W_0 = 23 \ \mu \text{m}$
 $\tau_0 = 30 \text{ fs}$
 $a_0 = 6$

 1st stage

 $n_e = 1.75 \times 10^{18} \text{ cm}^{-3}$

- Results after 1.5 cm:
 - Quasi-monoenergetic beam
 - Energy ~ 1.8 GeV
 - Charge ~ 5 nC > 350 MeV

1ST STAGE: LASER DEPLETION AND TRANSITION TO PLASMA WAKEFIELD

1st **stage**: Laser wakefield acceleration of electrons (CALDER-Circ, ~ 1.5 cm)

Scaling laws of the blowout regime

1.5 cm: depletion of the laser pulse Slow transition toward plasma wakefield regimes **PARAMETERS** $E_0 = 15 \text{ J} \quad W_0 = 23 \ \mu \text{m}$ $\tau_0 = 30 \text{ fs} \qquad a_0 = 6$ 1^{st} stage $n_e = 1.75 \times 10^{18} \text{ cm}^{-3}$

2ND STAGE: GENERATION OF A PLASMA WAKEFIELD

PARAMETERS

 $E_0 = 15 \text{ J}$ $W_0 = 23 \ \mu \text{m}$

1st stage

 $n_e = 1.75 \times 10^{18} \text{ cm}^{-3}$

2nd stage

 $\tau_0 = 30 \text{ fs} \qquad a_0 = 6$

1st stage: Laser wakefield acceleration of electrons (CALDER-Circ, ~ 1.5 cm)

 $n_e < n_{beam}$

Scaling laws of the blowout regime

2nd stage: X-ray emission in a plasma wakefield regime (CALDER 3D, ~ 3 mm)

PLASMA WAKEFIELD: PHASE SPACE MODULATION AND INCREASE OF THE TRANSVERSE MOTION

MEV-BETATRON SOURCE GENERATED IN THE PLASMA WAKEFIELD STAGE

BETATRON SOURCE: 1 STAGE SCHEME VS 2 STAGES SCHEME

- Comparison with a reference case:
 - single stage
 - $n_e = 1 \times 10^{19} \text{ cm}^{-3}$
 - 5 mm target

Setup	1 stage	2 stages	
E _c	240 keV	9 MeV	
E _{rad}	7.5 mJ	140 mJ	
η	0.05 %	0.9 %	

CONCLUSION

- Improvement of the betatron source energy
 - Emission in the multi-MeV domain with sub-PW class lasers
 - ➡ New applications for betatron sources (gammagraphy...)
- No additionnal source of energy in the beam-driven stage
 - ➡ Increase of the betatron source efficiency
- Requirements : high current and small transverse size.
 - Laser power must be high enough
 - Lower efficiency for low-energy laser systems

NUMERICAL PARAMETERS

CALDER 3D		CALDER Circ	
Box size (cells)	800 imes 200 imes 200	Box size (cells)	3200×200
Δz	$0.5~c/\omega_0$	Δz	0.25 c/ω_0
$\Delta x, \Delta y$	$0.5~c/\omega_0$	Δr	4 c/ω_0
Δt	0.288 ω_0^{-1}	Δt	0.249 ω_0^{-1}

| PAGE 20

• Medical applications (radiography for cancer detection)

- Laser: 11 J
- 7 mm-thick bones
- time exposure: 2h

• Medical applications (radiography for cancer detection)

- Laser: 11 J
- 7 mm-thick bones
- time exposure: 2h

- Thicker tissues
- Shorter time exposure

- Higher photon energy
- Higher number of photons

$$N_X = 4.4 \times 10^{-12} \sqrt{\gamma n_e [\text{cm}^{-3}]} \boldsymbol{r}_{\beta} [\mu \text{m}]$$

Medical applications (radiography for cancer detection)

- Laser: 11 J
- 7 mm-thick bones
- time exposure: 2h

- Thicker tissues
- Shorter time exposure

- Higher photon energy Higher number of photons

$$E_c \ [\text{keV}] = 5.2 \times 10^{-21} \gamma^2 n_e [\text{cm}^{-3}] \boldsymbol{r_\beta} [\mu\text{m}]$$
$$W_X = 4.4 \times 10^{-12} \sqrt{\gamma n_e [\text{cm}^{-3}]} \boldsymbol{r_\beta} [\mu\text{m}]$$

- **DLA** enhancement K. Nemeth et al. Phys. Rev. Lett. 100 095002 (2008)
- Density step K. Ta Phuoc et al. Phys. Plasmas 15, 063102 (2008)

PAGE 25

• Medical applications (radiography for cancer detection)

 \frown

- Laser: 11 J
- 7 mm-thick bones
- time exposure: 2h

- Thicker tissues
- Shorter time exposure

- Higher photon energy
- Higher number of photons

$$E_{c} [\text{keV}] = 5.2 \times 10^{-21} \gamma^{2} n_{e} [\text{cm}^{-3}] \mathbf{r}_{\beta} [\mu\text{m}]$$

$$N_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$

$$M_{X} = 4.4 \times 10^{-12} \sqrt{\gamma n_{e} [\text{cm}^{-3}]} \mathbf{r}_{\beta} [\mu\text{m}]$$