FLASHForward X-1

High-quality electron beams from a plasma cathode

A. Knetsch¹, S. Bohlen¹, J. Dale¹, R. D'Arcy¹, J.-H. Röckemann¹, B. Hidding², Z. Hu¹, V. Libov³, T. Mehrling¹, P. Niknejadi¹, A. M. de la Ossa¹, K. Poder¹, L. Schaper¹, B. Sheeran¹, M. Streeter¹, G.Tauscher¹, M. Quast¹, J. Zemella¹, J. Osterhoff¹

¹ Deutsches Elektronen Synchrotron, DESY
² University of Strathclyde, SCAPA, SUPA,
³ Institute of Experimental Physics, University of Hamburg

X-1: The Plasma Cathode

Target witness bunch properties	
Energy	> 1 GeV
Bunch length	1 - 20 µm
Emittance	< 1 µm
ΔE/E	~ 1 %

- Trojan Horse injection
- Laser-triggered Density downramp injection "Plasma Torch"

BMBF Verbundforschung:

- University of Düsseldorf
- University of Hamburg
- University of Jena
- University of Strathclyde

The FLASHForward PWFA facility

The FLASHForward Plasma area

Courtesy F. Marutzky

Setup for Trojan Horse injection

Courtesy F. Marutzky

Setup for Density-Downramp injection

Courtesy F. Marutzky

The gas cell

Gas inlets with H_2/He gas

H₂ ionization: Total gas density determines electron density.

Courtesy L. Schaper

The plasma cell

Key parameters

Gas inlets with H_2/He gas

- H₂ ionization: Total gas density determines electron density.
- Focussing determines slope and width of density spike.
- Adaptive optics to shape precisely plasma shape.

The plasma cell

Key parameters

Gas inlets with H_2/He gas

- H₂ ionization: Total gas density determines electron density.
- Focussing determines slope and width of density spike.
- Adaptive optics to shape precisely plasma shape.
- Total gas density and H₂/He ratio determine upper-plateau electron density.

Variable gas densities

The principle of laser-triggered DDR injection

- Decreasing plasma density causes expansion of plasma wake .
- Density downramp leads to decrease phase velocity of plasma wake.
- Decreased phase velocity enables injection of sheath electrons.

PIC simulations

- Density-downramp injection in PWFA can generate electron bunches with few kA current sub-µm emittances and few-percent energy spread [2].
- Simulations with realistic parameters are promising.
- Transverse normalized emittance < µm.

[2] AM de la Ossa et al., PRAB 2017

Engineering scaling law

Effective model for injected charge

- 1. Calculate focal spot.
- 2. Calculate He ionization with ADK.
- 3. Density gradient \rightarrow phase velocity • Injection criteria: $v_{\phi} < v_{e}$ 4. Charge estimate fitted from sim. parameter study: $Q \propto \int_{x_{1}}^{x_{2}} k_{p}^{3} n_{e}(x) dx$

Stabilization studies

Expected injected charge

Laser-energy and pointing jitter

• Pointing and energy jitter show a large parameter space with constant charge.

Stabilization studies

Expected injected charge

- Pointing and energy jitter show a large parameter space with constant charge.
- Gas density and He/H₂ ratio calculations indicates ~ 50:50 mixture.

Dark Current mitigation

Ensure density-downramp is source of injection

•	Ionization	injection	\rightarrow	Expected	fields	too	low.
---	------------	-----------	---------------	----------	--------	-----	------

- Deformed blowout near plasma edge (40 μm)
 - \rightarrow Injection at density spike.
- Low-quality witness bunch injected.
- Need for wide plasma channel and good alignment.

	Witness bunch parameters		
charge rms bunch length		111.7 pC	
		18.1 mu	
e	mittance	1e-5 m rad	
pe	eak current	1.3 kA	
D	ivergence	65 mrad	

Synchronization and alignment

Observation of light-emission from plasma

- Plasma heating from electron beam leads to additional ionization and largely enhanced recombination light signal.
- Method allows for fs-timescale synchronization and µm alignment [1].

[1] P. Scherkl, A. Knetsch, ,T. Heinemann et al., in submission. Poster by P. Scherkl

Summary

- X-1 aims at low-emittance electron bunches generated in an PWFA.
- Density-Downramp injection is capable of fullfilling set goals.
 - Emittance < 1 µm
 - Peak current > 1 kA
 - Brightness $>10^{15}$ A m⁻² rad²
- Dark Current mitigation properly prepared.
- Experimental setup nearly finished.

Summary

- X-1 aims at low-emittance electron bunches generated in an PWFA.
- Density-Downramp injection is capable of fullfilling set goals.
 - Emittance < 1 µm
 - Peak current > 1 kA
 - Brightness >10¹⁵ A m⁻² rad²
- Dark Current mitigation properly prepared.
- Experimental setup nearly finished.

Next AAC: Report Injection

Annex

Calibration effective theory

Laser-triggered density downramp injection

- H₂ / He gas mixture
- Pre-ionization laser ionizes a wide H₂ plasma
- Injection laser-arm ionizes small He plasma with steep ramps
- Injection by density-downramp injection

FLASHForward at DESY

