Andrea R. Rossi* INFN - Milan

Sources for Plasma Accelerators and Radiation Compton with Lasers And Beam

* andrea.rossi@mi.infn.it

A. R. Rossi

Quantity	Symbol	Baseline value	Range of exploration			
			Lower limit	Upper limit		
RF injector beam: at the photo-injector exit						
Energy	E	152.2 MeV	100 MeV	200 MeV		
Charge	Q	50 pC	10 pC	50 pC		
Bunch length (RMS)	τ	29 fs	3 fs	30 fs		
Current	I.	0.5 kA *	1 - 10 kA			
Shaped profile	-	Gaussean	triangular			
Total energy spread (RMS)	σ _ε /Ε	0.3 %	0.3 %			
Transverse normalized emittance	ε _{Ν,x} , ε _{Ν,y}	0.4 mm mrad	0.4 mm mrad			
Transverse norm. slice emittance	$\epsilon_{N,x,S}, \epsilon_{N,y,S}$	tbd	tbd			
Slice length	Zs	tbd	tbd			
Jitter, beam to global reference (RMS)	$\sigma_{\Delta t}$	10 fs	10 fs			
* Further compression is mandatory to fulfill the current requirement of 3 kA at the undulator entrance.						
FEL beam requirements at entrance of undulator						
Particle type	-	e-	e-			
Energy	E	1 GeV	1 GeV			
Charge	Q	30 pC	15 pC	100 pC		
Bunch length (FWHM)	τ	10 fs	3 fs	30 fs		
Peak current	I	3 kA	3-5 kA			
Repetition rate	f	10 Hz	1 Hz	100 Hz		
Number of bunches	Ν	1	1			
Total energy spread (RMS)	σ_{E}/E	1%	1%			
Slice energy spread (RMS)	$\sigma_{E,S}/E$	0.1 %	0.1 %			
Transverse normalized emittance	ε _{N,x} , ε _{N,y}	1 mm mrad	1 mm mrad			
Transverse norm. slice emittance	$\epsilon_{N,x,S}, \epsilon_{N,y,S}$	tbd	tbd			

- Case 2A: Laser Wakefield Acceleration with external injection from a RF accelerator, and acceleration to 1 GeV and staging to 5 GeV
- Case 3A: Laser Wakefield Acceleration with external injection from a laser plasma injector, and acceleration to 1 GeV and staging to 5 GeV

INFN Istituto Nazionale Grifsica Nucleare EUPRAXIA @ SPARC_LAB framework

Wednesday, 27 September 2017, WG1 - WG8 Joint Session 18:00 EuPRAXIA@SPARC_LAB: design study towards a new compact FEL facility at LNF Massimo Ferrario

Monday, 25 September 2017, WG3

17:10 RF injector design studies for the witness beam for a plasma-based user facility. Anna Giribono

Wednesday, 27 September 2017, WG4 16:45 EUPRAXIA at SPARC_LAB: Beam Dynamics studies for the X-band Linac Cristina Vaccarezza

Monday, 25 September 2017, Poster Session ELECTRON BEAM TRANFER LINE DESIGN FOR PLASMA DRIVEN FREE ELECTRON LASER Marcello Rossetti Conti

Wednesday, 27 September 2017, WG4 18:45 FEL performances of plasma accelerated electron beams Vittoria Petrillo

Design guidelines

Require minimal parameters for laser, allowing for staging.

$\sigma_{_{ m tr}}$ [µm]	35
$ au_{_{\mathrm{FWHM}}}$ [fs]	112
E [J]	6,13
a ₀	1,15

Require minimal capillary length for plasma stage (plasma channel).

n _₀ [cm⁻³]	10 ¹⁷
L [cm]	6

Allow for higher target energies.

A. R. Rossi

$$L_d \sim L_{pd} \sim \text{tens of cm}$$

A. R. Rossi

Input beam

A. Giribono and C. Vaccarezza

Wednesday, 27 September 2017 WG3

17:10 extreme high brightness electron beam generation in a space charge regime Luca Serafini

INFN

ituto Nazional

Ideal setting: final beam

SPARC

1065

4,3

26,5

1.2 10⁻²

7 10⁻⁴

0,44

0,06

after

High brightness, plasma boosted beams for driving a Free Electron Laser

3rd European Advanced Accelerator Workshop, Porto Ferraio, Italy, 26/09/2017

A. R. Rossi

Ideal and $l_r = 0.5\lambda_{\beta}$ settings comparison

No significant differences on current peak

SPARC

Conclusions

- Preliminary simulations for EuPRAXIA and EuPRAXIA@SPARC_LAB
 1GeV LWFA stage with External Injection are ongoing.
- They are yielding promising results in terms of beam brightness.
- Ideal setting and a configuration with short ramps produce bunches able to drive an FEL.
- A rough estimate for stability vs jiters in injection phase and beam size has been presented.
- To do: conclude longer ramps study and extend to 5 GeV target energy.