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Introduction

o Charged particle beams interact with their environment and produce wakefields,
generally in accelerators wakefields are bad, but sometimes they can be good,
too.

High impedance mediums e.g. dielectric-lined waveguides, corrugated structures.
and plasmas are used to generate large wakefield amplitudes.

The wakefield can be calculated from the convolution of the current profile and
the Green'’s function:

echirper

E(z) = /3 I(z - 2)G(Z)dZ G(z) = Z Kkncos(k,z)
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Applications

» Efficient beam-driven acceleration between drive and witness bunch,
Voss&Weiland 1972. May be useful in future TeV colliders with enhanced

transformer ratios.

-Beam manipulation applications:

-Linearizer/dechirper for improving peak currents orreducing energy

spreads

-Multibunching for e.g. THz generation applications
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Passive longitudinal phase space linearizer

P. Craievich
Sincrotrone Trieste—ELETTRA, Trieste, Iraly
(Received 23 September 2008; published 30 March 2010)
We report on the possibility to passively linearize the bunch compression process in electron linacs for
the next generation x-ray free electron lasers. This can be done by using the monopole wakefields in a
dielectric-lined waveguide. The optimum longitudinal voltage loss over

the length of the bunch is
calculated in order to compensate both the second-order rf time curvature and the second-order
momentum compaction terms. Thus. the longitudinal phase space after the compression process is
linearized up to a fourth-order term introduced by the convolution between the bunch and the monopole
wake function,
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Experimental Demonstration of Energy-Chirp Compensation by a Tunable

Experimental Demonstration of Energy-Chirp Control in Relativistic Electron Bunches Dielectric-Based Structure

Using a Corrugated Pipe
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(Received 30 September 2013: published 23 January 2014)

The first experimental study is presented of a corrugated wall device that uses wakefields to remove a
linear energy correlation in a relativistic electron beam (a “dechirper”). Time-resolved measurements of
both longitudinal and transverse wakefields of the device are presented and compared with simulations.
This study demonstrates the feasibility to employ a dechirper for precise control of the beam phase space in
the next generation of free-electron-lasers.
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A tunable energy-chirp compensator was used to remove a correlated energy chirp from the 60-MeV
beam at the Brookhaven National Laboratory Accelerator Test Facility. The compensator operates through
the interaction of the wakefield of the electron bunch with itself and consists of a planar structure comprised
of two alumina bars with copper-plated backs separated by an adjustable beam aperture. By changing the
gap size, the correlated energy chirp of the electron bunch was completely removed. Calculations show that
this device, properly scaled to account for the electron bunch charge and length, can be used to remove
residual correlated energy spread at the end of the linacs used for free-electron lasers. The experimental
results are shown to be in good agreement with numerical simulations. Application of this technique can
significantly simplify linac design and improve free-electron lasers performance.

DOL: 10.1103/PhysRevLett.112.114801 PACS numbers: 41.60.Bq, 41.75.Ht, 41.85.Ct

N



DLW overview

* Dielectric-lined waveguides (DLW)

— Around since 60s, applications to
communication and data transfer.

— Wakefield application came in mid-to-late
1980s, see W. Gai.

— First experiments in early 90s.

- Fundamental mode is a deflection mode
which has limited their use for e.g. collider
applications.

-Argonne National Lab recently

demonstrated 100 MV/m from drive to
withess beam ! See M. Conde talk.
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Self-Wake Interactions at Low Energy

* Photo-Injector Source:

— ~ 100 Amp currents.

— < 10 MeV energy out of gun (L-Band(1.3GHz - 60 MV/m) vs S-
Band(2.856 GHz - 140 MV/m), X...), energy spread.

— Emittances < 1 um for S-Band. Ideal for fitting into smaller structures.
* Ballistic bunching, shaping+
* No CSR
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Density modulation at 1 THz

* S-Band Gun

* DLW parameters (a, b, €, L) =(350
um, 363 um, 5.7, 11 cm)
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Solenoid #1 Solenoid #2

%;yAM/ | 1THz Continued..
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500 GHz DLW -

(350 um, 393 um, 5.7)
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L-Band case study

* Larger emittance
— Larger structures
— Lower frequencies

* Lower energy

— Shorter bunching
length for same
energy modulation

— More space charge
effects
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Passive Compressor

L ~ A - Single peak.
Peak current limited by energy spread.

Scan various wavelengths and record peak
current.

For L-Band case, this corresponds to a peak
current of ~ 12 kA (7.1%).

Scalable for higher charge / large structures
a=650 um
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Passive Compressor for  _=
beam-driven applications &

Bunch larger portion of the bunch (50%) %72
=

Extremely scalable: higher charge— longer 5

bunches— larger structures.

Details: Red trace: immediately after structure,

blue trace 1.2 m (1.13 m bottom) downstream.<

T 4000p

(a, b, e, L) = (1 mm, 1.05 mm, 5.7, 5 cm) 2 o0

corresponding to AO = 1.948 mm "wog
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Longitudinal Shaping with DLW
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* Larger wavelengths (A>>L)
— Bunch shaping
— Passive bunching
— De-chirper/Linearizer

* Ramped bunch for high transformer ratio
acceleration.
— Here for (165 pm, 197 pum, 5.7)
— R = 7.3 (Theoretical max 9.3)

PRL 118, 054802 (2017) PHYSICAL REVIEW LETTERS 3 FEBRUARY 2017

Generation of Ramped Current Profiles in Relativistic Electron Beams
Using Wakefields in Dielectric Structures
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Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear
wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method
that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a
permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact,
passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron
beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here,
we report on these experimental results including beam and wakefield diagnostics and pulse profile
reconstruction techniques.



Experiment at PITZ

> Setup allowed for precise beam alignment
and transmission through DLWs:

“DLWs holder equipped with YAG:Ce
screens

“Gun quad system improved beam
symmetry and enabled full transmission

"Two steerers between gun and DLW.

"PITZ’ flat-top pulses improved results
significantly.
» Coated DLW (A1 = 1.03 mm)
(a,b,L,€,) = (450 um, 550 um, 5 cm, 4.41)

* Uncoated DLW (A = 1.60 mm)
(a,b,L,e,) = (750 um,900 um, 8 cm, 4.41)
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Experiment at PITZ

Demonstrated the formation of ~ps
bunch trains at ~6 MeV with resolution
limited peak currents up to ~150 A

Directly measured the longitudinal
phase space downstream of the DLW
structure

Passed a bunch train with up to 200
bunches per pulse through the structure
and monitored energy modulations

no dynamical effects observed.

| - ~120A

DLW out

DLW in
(coated)

energy




Control of longitudinal phase space

* Booster phase provides a
knob to control the
longitudinal phase space
correlation

* Possible applications as:

* an injector for multicolor
radiation source (e.g. FEL)

time

* Time resolved ultrafast
electron diffraction (UED)
single-shot!

momentum —
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