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In this work, we investigate the spontaneous emission process 

and its detrimental effects on coherent free-electron laser (FEL) 

emission. In our model, the electron dynamics are described by a 

discrete Wigner distribution coupled to Maxwell equations. For an 

FEL operating in the quantum regime of single photon recoil, 

insights on the variation of momentum distribution, bunching 

factor, and radiation power are presented. We also show a simple 

differential equation that describes the evolution of the radiated 

power in the linear regime. It is shown that the essential results 

of this work agree with those predicted by a density matrix 

approach. 
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1. The classical “conventional”  FEL 

2. The quantum regime of FEL: What and how to reach? 

3. Discrete Wigner model for quantum FEL 

Abstract 

4.1. Results 1 (Field dynamic) 

We have presented a discrete Wigner model for the quantum FEL, including 
spontaneous emission. This model describes the momentum as a discrete variable, as it 
should be assuming spatial periodic boundary conditions. We have shown that, in the 
quantum regime, the equations reduce to these for two-momentum states coupled to  
the coherent radiation field. Spontaneous emission is there interpreted as responsible 
for the loss of coherence (i.e. bunching) and the transfer of electrons into and out of 
the two momentum states via rate equation terms. 

High-gain FEL mechanism involves two processes: 

 Radiation fields 𝐸, 𝐵  bunch electrons by Lorentz Force 

 

Bunched electrons drive radiation (Maxwell’s wave Eq.) 

𝑭 = − 𝒆 𝑬 + 𝒗 × 𝑩  𝜵𝟐𝑬 −
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High-gain FEL is described by [1]: 
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𝜃𝑗 = 𝑘𝑤 + 𝑘 𝑧 − 𝜔𝑡𝑗   Ponderomotive phase 

𝑝 𝑗 = 𝛾𝑗 − 𝛾𝑟 𝜌𝛾𝑟   Scaled energy change 

𝐴 2 = 𝜀0 𝐸 2 𝜌𝑛𝑒𝛾𝑚𝑐2   Scaled EM field intensity 

 Scaled position in wiggler 𝑧 = 𝑧 𝐿𝑔 = 4𝜋𝜌𝑧 𝜆𝑤  
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The High Gain FEL 
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Photon recoil 

Electron recoil (momentum Spread)  

• Classical description holds. 

• Momentum exchange is continues, 
multi photon emission is allowed. 

• A broad-spiky spectrum. 

• Classical description will break down 

• Momentum exchange is discrete, 
single photon emission is allowed. 

• A single line spectrum. 

Condition of the quantum regime 

 Quantum FEL parameter [2]: 
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Physical interpretation 

 

Possible scheme 

 The laser undulator FEL can be quantum FEL [3]:        

(Collective Compton backscattering)  

 
𝜆𝑟 = 𝜆𝐿 4𝛾2 1 + 𝑎𝐿

2 , 

𝜆𝐿 is the laser wavelength. 

𝑎𝐿 =
2.4𝜆𝐿

𝑟0
𝑃(𝑇𝑊) 

Laser radius 

Laser power 

Intuitive example:  

     To generate sub-Angstrom QFEL, λr=0.1 Å  

  
 

 

- The gain length  𝐿𝑔 = 𝜆𝑤(or 𝜆𝐿/2) 4𝜋𝜌  

- The QFEL is operated if 

 

 

𝜌 ≤
ℏ𝑘

𝑚𝑐𝛾
 

Undulator FEL:  

 
Laser undulator FEL 

𝜆𝑤 = 1 cm @ 𝐸 = 10 GeV 

 𝜌~10−6 &  𝐿int > 𝐿𝑔~1 km ‼ 

𝜆𝐿 = 1 µm  @  𝐸 = 100 MeV 

 𝜌~10−4  &  𝐿int > 𝐿𝑔~1 mm 

𝜃 is assumed to be a periodic variable in (0,2𝜋]. This hypothesis assures that the 

conjugate momentum variable 𝑝 is discrete [4]. 

The electron wavefunction :  

 𝑛 = exp 𝑖𝑛𝜃 , 𝑝 𝑛 = 𝑛 𝑛 , 𝑝 = −𝑖
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The momentum state: Momentum operator: Eigen-value equation: 

The electron dynamic is described by a Schrodinger-like equation:  
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The coupled equations that describes the FEL including the spontaneous emission:  
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Wigner function is periodic in 𝜽 and is expressed by:  
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From the above equations, we get the coupled equations in the form of:  
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4.2. Results 2 (Electrons dynamic) 5. Conclusion 
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Detrimental effect of spontaneous emission [5] 

 

Linear and non-linear regimes 

 

FIG. 1. 𝑨 
𝟐
vs. 𝒛   

 

Final population 𝑃−𝟏 = 𝑤−1
0 ,  

 

FIG. 2. 𝑨 
𝟐
vs. 𝒛   

 

At resonance 𝛿=1/2𝜌 , 

𝐵 0 = 0.01, 𝐴 0 = 0,  

𝑃0 0 = 1,   𝑃−1 0 = 0. 

 (i) For D = 0, the system shows a 
periodic behavior, with maximum 

of 𝑨 
𝟐
=1.  

(ii) The detrimental effect of 
spontaneous emission is neglected 
when D <0.05. 

Solving the coupled equations 

in the linear limit: 

𝐵 0 = 0.0, 𝐴 0 = 0,  

𝑃0 0 = 1, 𝑃−1 0 = 0,  

   𝐰e get, 

 𝑑2𝐴 (𝑧 )

𝑑𝑧 2
+ 𝑖𝛿 + 𝐷

𝑑𝐴 (𝑧 )

𝑑𝑧 
 

 

− 1 − 𝐷𝑧 𝑒−𝐷𝑧 𝐴 = 0 

FIG. 3. The electron distribution function Q  vs. 𝜽. 
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In FIG. 3, the energy spread 
induced by spontaneous emission 
smears the electron spatial 
distribution. 
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A distribution function Q is defined as [5]:  

𝛿 = 𝛿 − 1 2𝜌  𝜌  . 𝑧 = 𝜌 𝑧 , 𝐴 2
=no. of photons per electron  

 


