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What this talk is about

Showing that an approach invented by Maxwell 150 years ago is until today important in science 

• Introducing Mawell’s original “equations of matter” 

• Using this moment approach to model hosing in PWFAs 



Maxwell  moment eqns 
of matter for gases2, 
Maxwellian equilibrium 
distribution function

Maxwell eqns of 
electromagnetism1

Boltzmann kinetic eqn3 
for non-equil f(r,v,t), H-
theorem, Second Law

1. J.C. Maxwell,  Phil. Trans. Roy. Soc. London 155, 459 (1865) 

• Maxwell’s equations of matter adapted ~100 years later to low temperature plasmas4, and ~ 150 

years later highly relativistic beams in plasma accelerators5

J. Clerk Maxwell  (1831-1879) 

2. J.C. Maxwell,  Phil. Trans. Roy. Soc. London  157, 49 (1867) 

3. L. Boltzmann, Wien. Bericht 66, 275 (1872) 

4. E.A. Mason and E.W. McDaniel, “Transport properties of ions in gases” (Wiley, New York, 1988) 

5. R.E. Robson, T.J. Mehrling and J. Osterhoff, accepted for publication in Europ. J. Phys. (2017)
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Modern fluid equations are moment equations of the same mathematical form as Maxwell’s 
original expressions: Robson et al, Rev. Mod. Phys. Rev Mod Phys 77, 1303-20 (2005)
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• ( ∂t + v.∇ + F. ∂p ) f  =   (∂t f )collisions    ≈ 0         (Vlasov kinetic equation, v = p /mγ)   (1) 

• Phase space averages <φ(r,p) >=       ∫  d (phase space) f(r,v,t) φ (r,p) 

• ∫ d (phase space)  φi (r,p) × Vlasov eqn !  moment equations for <φi(r,p) >        (i=1,2,3, ..) 

•    Traditional approach: First find f(r,v,t) from (1) or PIC simulation and then form moments -more 
accurate, but less efficient

Maxwells moment approach for relativistic systems
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• Maxwell method: Solve for moments directly  - requires closure Ansatz



Plasma wakefield acceleration with a tilted beam 

3D PIC simulation using the code HiPACE

Significant tilt from here

Witness beam to be accelerated here

Plasma electrons

Drive beam 
(no energy spread)

HiPACE 
A highly efficient plasma accelerator emulation

H PACE
H PACE

H PACE

Propagation direction

- Initial beam asymmetry is amplified

- Is beam breakup inevitable?

Hosing is a challenge!

               Example: Application of moment approach on hosing in PWFAs

Hosing	is	a	challenge	and	it	is	vital	to	study	the	connected	dynamics
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               Describing dynamics of plasma sheath electrons in hosing

Centroid 
probed here

Tilt introduced here
HiPACE 
A highly efficient plasma accelerator emulation

H PACE
H PACE

H PACE

Tilted beam with triangular current profile

Init. centroid:
Energy: 28.5 GeV; Peak current: 6.65 kA

4

We regard a beam with the parameters used in Ref. [10]. It has an energy of �
0

= 55773, and a transverse Gaussian
density distribution with transverse dimensions k

p

�

x

= k

p

�

y

= 13.0 ⇥ 10�3. The current profile is triangular with

the current rising from zero at k
p

⇠ = �0.8 to the peak value of Î
b

= 6.65 kA at k
p

⇠ = �0.53. From this position, the
current decreases linearly to zero at k

p

⇠ = 3.19. The initial beam centroid is given by X

b,0

(⇠) = 4.17⇥10�3⇥⇠⇥(k
p

⇠),
hence, a tilt is introduced from position k

p

⇠ = 0. The beam propagates through a flat-top plasma target with density
n

0

and drives a plasma wave in the blowout regime. We investigate the hose instability for the case of no beam
energy spread as in Ref. [10], and study the dependence of hosing on the degree of the initial relative uncorrelated
energy spread �� = �

�

/�

0

. Case S
2a

is without energy spread, �� = 0.0, case S
2b

has a relative energy spread of
�� = 0.005, case S

2c

has �� = 0.01 and case S
2d

features �� = 0.02.
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PIC: Triangular beam, ∆γ = 0.0 (S2a)
PIC: Triangular beam, ∆γ = 0.005 (S2b)
PIC: Triangular beam, ∆γ = 0.01 (S2c)
PIC: Triangular beam, ∆γ = 0.02 (S2d)

b)

a)

FIG. S.3: a) Evolution of beam centroid at the beam-tails (at kp⇠ = 4.0) for cases S2a (blue), S2b (green), S2c (yellow) and S2d

(red) obtained from PIC simulations. b) Centroid evolution along z and ⇠ for case S2a, from a PIC simulation.

The simulations are performed using the quasi-static PIC code HiPACE [9]. The dimensions of the simulation box
are 5⇥9⇥9 k�3

p

and the number of cells 512⇥512⇥512. The time step is adjusted dynamically during the simulation
and spans from !

p

�t

init

= 20.0 at the beginning of the simulation to !

p

�t

fin

= 6.0 at the end of the simulation
(!

p

t

max

= 1.0 ⇥ 105). Four particles per cell are used to model the plasma and 6 ⇥ 105 beam particles are used for
case S

2a

and 2⇥ 107 beam particles for cases S
2b

, S
2c

and S
2d

, where a quadratic charge interpolation is employed.
Fig. S.3a depicts the temporal evolution of the beam centroid at the tail of the beam (k

p

⇠ = 3.15) for all four
cases. The beam centroid amplitude grows exponentially until k

�,0

z ⇠ 35, in agreement with the result provided in
Ref. [10]. However, we find that the growth rate for greater propagation distances is not exponential. In the contrary,
for case S

2a

, the beam centroid reaches a maximum at k

�,0

z ⇠ 70 and then saturates at an amplitude smaller than

the maximum oscillation amplitude. The simple estimate �✏ ⇠
q

2Î
b

/(I
A

�

0

) yields for the decoherence time from

a di↵erential energy change !

�,0

t

d,✏

⇠ 50 (compare Eq. (S.11)), in good qualitative agreement with the simulation
results.

It can also be seen that a sub-percent relative energy spread (0.5% in case S
2b

) already significantly reduces the
beam centroid. An energy spread of 1.0% in case S

2c

damps the centroid amplitude to about half the the value as
compared to case S

2a

. An energy spread of 2.0% in case S
2d

even reduces the centroid oscillation amplitude to a value
lower than the initial beam centroid deviation.

Setup as in C. Huang, et al. PRL 99, 255001 (2007). 

Mitigation of the hose instability in plasma-wakefield accelerators

T.J. Mehrling,1, 2 R.A. Fonseca,2, 3 A. Martinez de la Ossa,1 and J. Vieira2

1Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
2GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico,

Universidade de Lisboa, 1049-001 Lisboa, Portugal
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Plasma-wakefield accelerators have remarkable features, such as accelerating fields three orders of
magnitude greater than those in conventional accelerators. However, current models predict that
the hose instability will crucially limit their applicability. This work demonstrates that the evolution
of the electron-beam driver in the plasma can self-consistently suppress the hose instability. The
energy change occurring as the beam drives the plasma wave, along with its initial correlated and
uncorrelated energy spread, detune the betatron oscillations, and thereby damp the hose instability.
It is also shown that realizable longitudinally tapered plasma profiles can strongly mitigate the
initial hosing seeds. Hence, this work demonstrates that the propagation of a particle beam driver
can be stabilized over long propagation distances, allowing for high quality particle acceleration in
plasma. We find excellent agreement between our models and particle-in-cell simulations.

PACS numbers: 52.40.Mj, 41.75.Ht, 29.27.Bd, 52.35.-g, 52.65.Rr

Introduction - Plasma-based accelerators provide ac-
celerating fields in excess of 10 GV/m [1, 2] and hence
are considered a technology candidate capable of lever-
aging a dramatic miniaturization of future accelerators
and to prevent the current scientific progress from fal-
tering in terms of provided beam energy, versatility and
availability of accelerator facilities. In plasma-wakefield
accelerators (PWFA) [3–5], charged particle beams are
used as drivers to excite high amplitude plasma waves.
Of particular interest is the blowout regime, in which a
particle beam with a charge density much greater than
the ambient plasma density expels all plasma electrons
from its vicinity, thereby generating ion-channels with
linear focusing properties for electron-witness beams and
with extreme accelerating fields [6].

While the large amplitude longitudinal electric field
enables rapid acceleration, the comparable magnitude of
the transverse fields entails large growth rates for the hose
instability. The hose instability was early identified as a
crucial challenge for stable acceleration in PWFA [7]. It
is seeded by an initial transverse asymmetry of the beam
charge density which couples to the electrons surrounding
the ion channel. According to current models, an initial
beam centroid deviation is thereby amplified exponen-
tially during the acceleration process [7–11], resulting in
unstable propagation or beam-breakup for not perfectly
symmetric beams in PWFA.

The coupled evolution of the ion-channel centroid
X

c

(⇠, t) and the beam centroid X

b

(⇠, t) in the blowout
regime using the rigid beam model is given by the di↵er-
ential equations [11]
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with the time t, the co-moving coordinate ⇠ = ct � z,
where z is the longitudinal coordinate and c is the speed
of light. The inverse plasma skin depth is denoted by
k
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/c, and the betatron frequency by !
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with the Lorentz factor �, where !
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=
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/m is
the plasma frequency with the ambient plasma density
n

0

, the elementary charge e and the electron rest mass
m. The coe�cients c

 

(⇠) and c

r

(⇠) account for a rel-
ativistic motion of electrons in the plasma sheath, and
for a ⇠-dependence of the blowout radius and the beam
current [11]. Equations (1) and (2) infer that a beam
centroid deviation results in a change of the ion-channel
centroid along the beam and the deviation of X

c

couples
back to the temporal evolution of X

b

. For c

 

= c

r

= 1,
i.e. for a linear response of the sheath electrons, asymp-
totic solutions in the short-beam, long-propagation limit
(k

p

⇠ ⌧ !

�

t) can be found [8, 9], suggesting an expo-
nential growth of the instability. As demonstrated in
Ref. [11], the exponential growth rate is reduced for
c

 

c

r

< 1. However, according to these models the hose
instability can pose a strong constraint for the applica-
bility of plasma-wakefield accelerators.

In this work, we show that initial properties of the
electron-beam driver along with the dynamics during its
propagation in the plasma can self-consistently suppress
the hose instability. The energy gain/loss, occurring as
the beam excites the plasma wave, or an initial beam
energy chirp, detune the betatron oscillations along the
beam, therefore resulting in a damping of the hose in-
stability. In addition, a finite uncorrelated energy spread
leads to a betatron decoherence of the electrons within
the beam slices and hence to a reduction of the hose in-
stability. Moreover, we present that the hose seed can be
vitally reduced by the use of tailored vacuum-to-plasma
transitions, which can be produced in the laboratory.

*C. Huang et al., PRL 99, 255001 (2007). 

**T. Mehrling et al., PRL 118, 174801 (2017).

Current description of hosing in the blowout

Temporal evolution described ok.
But amplitudes don’t match!
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probed here
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We regard a beam with the parameters used in Ref. [10]. It has an energy of �
0

= 55773, and a transverse Gaussian
density distribution with transverse dimensions k
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the current rising from zero at k
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⇠ = �0.8 to the peak value of Î
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= 6.65 kA at k
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⇠ = �0.53. From this position, the
current decreases linearly to zero at k
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⇠ = 3.19. The initial beam centroid is given by X
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hence, a tilt is introduced from position k
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⇠ = 0. The beam propagates through a flat-top plasma target with density
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and drives a plasma wave in the blowout regime. We investigate the hose instability for the case of no beam
energy spread as in Ref. [10], and study the dependence of hosing on the degree of the initial relative uncorrelated
energy spread �� = �
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PIC: Triangular beam, ∆γ = 0.0 (S2a)
PIC: Triangular beam, ∆γ = 0.005 (S2b)
PIC: Triangular beam, ∆γ = 0.01 (S2c)
PIC: Triangular beam, ∆γ = 0.02 (S2d)

b)

a)

FIG. S.3: a) Evolution of beam centroid at the beam-tails (at kp⇠ = 4.0) for cases S2a (blue), S2b (green), S2c (yellow) and S2d

(red) obtained from PIC simulations. b) Centroid evolution along z and ⇠ for case S2a, from a PIC simulation.

The simulations are performed using the quasi-static PIC code HiPACE [9]. The dimensions of the simulation box
are 5⇥9⇥9 k�3
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and the number of cells 512⇥512⇥512. The time step is adjusted dynamically during the simulation
and spans from !
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= 20.0 at the beginning of the simulation to !
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= 6.0 at the end of the simulation
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= 1.0 ⇥ 105). Four particles per cell are used to model the plasma and 6 ⇥ 105 beam particles are used for
case S

2a

and 2⇥ 107 beam particles for cases S
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and S
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, where a quadratic charge interpolation is employed.
Fig. S.3a depicts the temporal evolution of the beam centroid at the tail of the beam (k

p

⇠ = 3.15) for all four
cases. The beam centroid amplitude grows exponentially until k

�,0

z ⇠ 35, in agreement with the result provided in
Ref. [10]. However, we find that the growth rate for greater propagation distances is not exponential. In the contrary,
for case S

2a

, the beam centroid reaches a maximum at k

�,0

z ⇠ 70 and then saturates at an amplitude smaller than

the maximum oscillation amplitude. The simple estimate �✏ ⇠
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⇠ 50 (compare Eq. (S.11)), in good qualitative agreement with the simulation
results.

It can also be seen that a sub-percent relative energy spread (0.5% in case S
2b

) already significantly reduces the
beam centroid. An energy spread of 1.0% in case S

2c

damps the centroid amplitude to about half the the value as
compared to case S

2a

. An energy spread of 2.0% in case S
2d

even reduces the centroid oscillation amplitude to a value
lower than the initial beam centroid deviation.

Setup as in C. Huang, et al. PRL 99, 255001 (2007). 
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energy change occurring as the beam drives the plasma wave, along with its initial correlated and
uncorrelated energy spread, detune the betatron oscillations, and thereby damp the hose instability.
It is also shown that realizable longitudinally tapered plasma profiles can strongly mitigate the
initial hosing seeds. Hence, this work demonstrates that the propagation of a particle beam driver
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Introduction - Plasma-based accelerators provide ac-
celerating fields in excess of 10 GV/m [1, 2] and hence
are considered a technology candidate capable of lever-
aging a dramatic miniaturization of future accelerators
and to prevent the current scientific progress from fal-
tering in terms of provided beam energy, versatility and
availability of accelerator facilities. In plasma-wakefield
accelerators (PWFA) [3–5], charged particle beams are
used as drivers to excite high amplitude plasma waves.
Of particular interest is the blowout regime, in which a
particle beam with a charge density much greater than
the ambient plasma density expels all plasma electrons
from its vicinity, thereby generating ion-channels with
linear focusing properties for electron-witness beams and
with extreme accelerating fields [6].

While the large amplitude longitudinal electric field
enables rapid acceleration, the comparable magnitude of
the transverse fields entails large growth rates for the hose
instability. The hose instability was early identified as a
crucial challenge for stable acceleration in PWFA [7]. It
is seeded by an initial transverse asymmetry of the beam
charge density which couples to the electrons surrounding
the ion channel. According to current models, an initial
beam centroid deviation is thereby amplified exponen-
tially during the acceleration process [7–11], resulting in
unstable propagation or beam-breakup for not perfectly
symmetric beams in PWFA.

The coupled evolution of the ion-channel centroid
X

c

(⇠, t) and the beam centroid X

b

(⇠, t) in the blowout
regime using the rigid beam model is given by the di↵er-
ential equations [11]
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centroid along the beam and the deviation of X
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Ref. [11], the exponential growth rate is reduced for
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< 1. However, according to these models the hose
instability can pose a strong constraint for the applica-
bility of plasma-wakefield accelerators.

In this work, we show that initial properties of the
electron-beam driver along with the dynamics during its
propagation in the plasma can self-consistently suppress
the hose instability. The energy gain/loss, occurring as
the beam excites the plasma wave, or an initial beam
energy chirp, detune the betatron oscillations along the
beam, therefore resulting in a damping of the hose in-
stability. In addition, a finite uncorrelated energy spread
leads to a betatron decoherence of the electrons within
the beam slices and hence to a reduction of the hose in-
stability. Moreover, we present that the hose seed can be
vitally reduced by the use of tailored vacuum-to-plasma
transitions, which can be produced in the laboratory.

*C. Huang et al., PRL 99, 255001 (2007). 

**T. Mehrling et al., PRL 118, 174801 (2017).

Current description of hosing in the blowout

Temporal evolution described ok.
But amplitudes don’t match!
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@Xb

@⇠
+ ⌦2(⇠, t) (Xb �Xc) = 0

Today only focussing on difference 
between recent models and PIC.

Tomorrow: More general (and 
instructive) talk on hosing at 12:00
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Sheath electrons

Plasma wakefield acceleration in the 
blowout regime

HiPACE 
A highly efficient plasma accelerator emulation

H PACE
H PACE

H PACE

               Describing dynamics of plasma sheath electrons in hosing

Ion channel

Beam
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Plasma wakefield acceleration in the 
blowout regime

HiPACE 
A highly efficient plasma accelerator emulation

H PACE
H PACE

H PACE

Sheath electrons

Beam

Question: 
How does the sheath respond to the 
beam displacement ?

               Describing dynamics of plasma sheath electrons in hosing

Ion channel
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With                      ,                        and

From                        obtain Vlasov equation in the QSA*: 

Theoretical model for the hose instability in plasma wakefield accelerators

T.J. Mehrling1, ⇤

1Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
(Dated: September 1, 2017)

Abstract

PACS numbers: 52.40.Mj, 41.75.Ht, 29.27.Bd, 52.35.-g, 52.65.Rr

INTRODUCTION

Intro

THEORETICAL BASIS

Co-moving frame ⇠ = t � z, where lengthscales are
normalized by the plasma wavenumber k

p

= !

p

/c and
timescales are normalized by the plasma frequency !

p

=p
4⇡n0e

2
/m, where c is the speed of light, n0 the ambient

plasma electron density, e the elementary charge and m

the electron mass.

Plasma centroid

Plasma phase space distribution f
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.

Quasi-static approximation (QSA) [1–3], @
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constant of motion � � p
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�  = 1, where � is the rel-
ativistic Lorentz factor and momenta are normalized to
mc.

The unperturbed phase space distribution of plasma
electrons f
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p,0(r, pr, ; ⇠, t), is azimuthally symmet-
ric and hence for a given time t and a co-moving position
⇠ only a function of radial position r, radial momentum
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Phase space density and Vlasov equation
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Vlasov equation:

Perturbed phase space density of sheath electrons:

*Quasi-Static Approximation (QSA): P. Sprangle, E. Esarey, and A. Ting, Phys. Rev. A 41, 4463 (1990).
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Derivation of the moment equation

Moments of perturbed phase space density

(Vlasov equation) x (   ) and integration by parts over phase space yields moment equation:
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Vlasov equation:
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               Example: Application of moment approach on hosing
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Note that the expansion of the phase space distribution
according to Eq. (3) implies N = N0 +O((hxi+ hp
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We are now interested in the evolution of the plasma
centroid hxi along the co-moving variable ⇠ for small
perturbations hxi and hp
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THEORETICAL BASIS
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ric and hence for a given time t and a co-moving position
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Note that the expansion of the phase space distribution
according to Eq. (3) implies N = N0 +O((hxi+ hp
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We are now interested in the evolution of the plasma
centroid hxi along the co-moving variable ⇠ for small
perturbations hxi and hp
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i. If we hence neglect terms
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Moment equation:
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Because of the small wakefield amplitude in the lin-
ear regime and the thin electron sheath in the blowout
regime, we now assume that the distribution is generally
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where integration by parts was used to obtain the third,
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The force terms are expressed in terms of the potentials
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We are now interested in the evolution of the plasma
centroid hxi along the co-moving variable ⇠ for small
perturbations hxi and hp

x

i. If we hence neglect terms
O((hxi+ hp

x

i)2), the change of the plasma centroid with
respect to the co-moving variable is

@

⇠

hxi = @

⇠

hr cos ✓i =
⌧
p

r

cos ✓

1 +  

�
. (10)

The moment term containing @
✓

(r cos ✓) vanishes. Ex-
panding 1/(1 +  ) around h i yields
⌧
p

r

cos ✓

1 +  

�
=

*
p

r

cos ✓

h1 +  i
1X

n=0

(�1)n
✓
 � h i
h1 +  i

◆
n

+
.

(11)

⌧
pr cos ✓

1 +  

�
' hpr cos ✓i

h1 +  i

Approximation:

2

Because of the small wakefield amplitude in the lin-
ear regime and the thin electron sheath in the blowout
regime, we now assume that the distribution is generally
su�ciently narrow to approximate the above moment as
hp

r

cos ✓/(1 +  )i ' hp
r

cos ✓i / h1 +  i. Using the mo-
ment equation (9), the change of the plasma electron
centroid along the comoving variable is then given by

@

2
⇠

hxi = @

⇠

hp
r

cos ✓i
h1 +  i

=

D
�

1+ Fr

cos ✓
E

h1 +  i � hp
r

cos ✓i
h1 +  i2

⌧
�F

 

1 +  

�

=

D
�

1+ Fr

cos ✓
E

h1 +  i � @

⇠

hxi
h1 +  i

⌧
�F

 

1 +  

�

(12)

Radial forces ... F
r

= F

p

+ F

b

...are expanded as

F

p

=

1X

n=0

hxin
n!

(� cos ✓)n@n
r

F

p,0 , (13)

F

b

=

1X

n=0

X

n

b

n!
(� cos ✓)n@n

r

F

b,0 , (14)

where F

p

(r, ✓, ⇠) and F

b

(r, ✓, ⇠) refer to fields generated
by the perturbed plasma and beam charge and current
densities, respectively and F

p,0(r, ⇠) and F

b,0(r, ⇠) to the
respective unperturbed, azimuthally symmetric fields.

We now use eqns (3), (13) and (14) and truncate the
expansions after first order, O(X

b

+ hxi + hp
x

i). Using
F

r

= F

p

+ F

b

, this yields

@

2
⇠

hxi = � hxi
2 h1 +  i0

⌧
�

1 +  

@

r

F

p,0

�

0

� X

b

2 h1 +  i0

⌧
�

1 +  

@

r

F

b,0

�

0

+
hxi

2 h1 +  i0

⌧
�

1 +  

(@
r

+ r

�1)F
p,0

�

0

+
hxi

2 h1 +  i0

⌧
�

1 +  

(@
r

+ r

�1)F
b,0

�

0

+
@

⇠

hxi
2

⌧
p

r

F

r,0

(1 +  )2

�

0

� @

⇠

hxi
h1 +  i0

⌧
�F

 

1 +  

�

0

(15)

where integration by parts was used to obtain the third,

fourth and fifth term and where
R 2⇡
0 cos2 ✓f

p,0 d✓ = ⇡f

p,0

was used. In virtue of the definition of  and the Lorentz
force F

 

equates to

�F

 

1 +  

=
p

r

F

r

1 +  

� F

z

. (16)

This allows for the simplification ...

@

2
⇠

hxi = � X

b

2 h1 +  i0

⌧
�

1 +  

@

r

F

b,0

�

0

+
hxi

2 h1 +  i0

⌧
�

1 +  

r

�1
F

p,0

�

0

+
hxi

2 h1 +  i0

⌧
�

1 +  

(@
r

+ r

�1)F
b,0

�

0

� @

⇠

hxi
h1 +  i0


1

2

⌧
p

r

F

r,0

1 +  

�

0

+ hF
z,0i0

�

(17)

The force terms are expressed in terms of the potentials
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Expand	force-terms	as:
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               Example: Application of moment approach on hosing
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Using blowout model from Ref. [4].
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the bubble, thereby ensuring that the azimuthal magnetic
field Bh plotted in Fig. 1(c) vanishes at r !1. Accounting
for the finite extent DJ of the return current is crucial for
accurate calculation of the magnetic field in the exterior of
the bubble. The unshielded magnetic field Bh within the
return current layer rbðnÞ < r < rbðnÞ þ DJ plays an impor-
tant role in determining the trajectories of electrons that
stream along the edge of the bubble. Such electrons can be
injected and trapped into an expanding bubble as has been
demonstrated8,9 in the context of laser wakefield accelera-
tors. The effect of the unshielded magnetic field outside the
bubble on the passing electrons is to push them away from

the bubble as can be observed from Figs. 1(b) and 1(c) by
comparing the signs of Jelec and Bh in the leading section of
the bubble. This effect of the unshielded field is further ela-
borated in Sec. III.

Note that the assumption of DJ > Dq is consistent with
the results of the PIC simulations illustrated in Fig. 1(d). The
introduction of separate length scales for q$ Jz and Jz is jus-
tified because q$ Jz % q. The assumption of DJ > Dq is also
justified on physical grounds because the plasma forms a
dense electron sheath to shield the positive charge of the bub-
ble over approximately a Debye length kD &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=e2n0

p
,

where Te ' mc2 is the effective temperature of the electrons
which arises due to the crossing of plasma electron trajecto-
ries in the sheath layer of the plasma bubble (see Figs. 1(a)
and 1(b)). On the other hand, the return current layer spreads
out over a collisionless skin depth DJ % k$1

p .
To determine the value of S0ðnÞ, we express the charge

continuity equation @q=@tþr ( J ¼ 0 under the quasi-static
approximation as19

@

@n
ðq$ JzÞ þ

1

r

@

@r
ðrJrÞ ¼ 0 : (11)

By integrating Eq. (11) over the transverse plane and noting
that the contribution of the second term vanishes, it can be
concluded that

@

@n

ð1

0

SðrÞrdr ¼ 0 (12)

for all values of n. Noting that the integrand vanishes ahead
of the beam, S0ðnÞ can be expressed as a function of the bub-
ble radius

S0ðnÞ ¼
r2

bðnÞ
2DqðrbðnÞ þ DqÞ

; (13)

which is different from the expression given in Refs. 17 and
18 due to our different choice of the source term radial pro-
files. The above equation can then be used to calculate the
effective potential w according to

wðn; rÞ ¼ $
ð1

r
dr0r0Sðn; r0Þln r

r0
: (14)

As shown in Sec. II C, the radial profile of wðn; rÞ can be
calculated analytically.

To calculate the value of JsðnÞ, we use Faraday’s
law and integrate the sum of the electric and displacement
currents over the transverse plane to arrive at

ð1

0

ðJz;beam þ Jz;elecÞrdr þ
ð1

0

d2w

dn2
rdr ¼ 0 : (15)

From Eqs. (14) and (15), the peak plasma current is obtained
as

JsðnÞ ¼
kðnÞ $

ð1

0

rdrd2w=dn2

DJðrb þ DJÞ
; (16)

FIG. 1. (a) and (b): Normalized plasma electron density qelec (a) and return
current density Jz;elec (b) from a quasi-static PIC simulation. (c): Azimuthal
magnetic field Bh. (d): Normalized radial profiles of Sðn; rÞ & $ðq$ JzÞ
(dashed line) and return current Jz;elecðn; rÞ (solid line) for fixed n. The driv-
ing beam (not shown) propagates from right to left.
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Using blowout model from Ref. [4].
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Using blowout model from Ref. [4].
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Using blowout model from Ref. [4].
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Channel centroid equation (narrow beam):

Using blowout model by Yi et al.* to obtain:
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Using blowout model from Ref. [4].
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Using blowout model from Ref. [4].
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               Example: Application of moment approach on hosing

New channel centroid equation:

@2Xc

@⇠2
+

k2p
2

[cc(⇠)Xc � cb(⇠)Xb] = 0

With the coefficients:
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Excellent agreement between new model and PIC

Centroid 
probed here

Tilt introduced here
HiPACE 
A highly efficient plasma accelerator emulation

H PACE
H PACE

H PACE

Tilted beam with triangular current profile

Init. centroid:
Energy: 28.5 GeV; Peak current: 6.65 kA

4

We regard a beam with the parameters used in Ref. [10]. It has an energy of �
0

= 55773, and a transverse Gaussian
density distribution with transverse dimensions k

p

�

x

= k

p

�

y

= 13.0 ⇥ 10�3. The current profile is triangular with

the current rising from zero at k
p

⇠ = �0.8 to the peak value of Î
b

= 6.65 kA at k
p

⇠ = �0.53. From this position, the
current decreases linearly to zero at k

p

⇠ = 3.19. The initial beam centroid is given by X

b,0

(⇠) = 4.17⇥10�3⇥⇠⇥(k
p

⇠),
hence, a tilt is introduced from position k

p

⇠ = 0. The beam propagates through a flat-top plasma target with density
n

0

and drives a plasma wave in the blowout regime. We investigate the hose instability for the case of no beam
energy spread as in Ref. [10], and study the dependence of hosing on the degree of the initial relative uncorrelated
energy spread �� = �

�

/�

0

. Case S
2a

is without energy spread, �� = 0.0, case S
2b

has a relative energy spread of
�� = 0.005, case S

2c

has �� = 0.01 and case S
2d

features �� = 0.02.
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PIC: Triangular beam, ∆γ = 0.0 (S2a)
PIC: Triangular beam, ∆γ = 0.005 (S2b)
PIC: Triangular beam, ∆γ = 0.01 (S2c)
PIC: Triangular beam, ∆γ = 0.02 (S2d)

b)

a)

FIG. S.3: a) Evolution of beam centroid at the beam-tails (at kp⇠ = 4.0) for cases S2a (blue), S2b (green), S2c (yellow) and S2d

(red) obtained from PIC simulations. b) Centroid evolution along z and ⇠ for case S2a, from a PIC simulation.

The simulations are performed using the quasi-static PIC code HiPACE [9]. The dimensions of the simulation box
are 5⇥9⇥9 k�3

p

and the number of cells 512⇥512⇥512. The time step is adjusted dynamically during the simulation
and spans from !

p

�t

init

= 20.0 at the beginning of the simulation to !

p

�t

fin

= 6.0 at the end of the simulation
(!

p

t

max

= 1.0 ⇥ 105). Four particles per cell are used to model the plasma and 6 ⇥ 105 beam particles are used for
case S

2a

and 2⇥ 107 beam particles for cases S
2b

, S
2c

and S
2d

, where a quadratic charge interpolation is employed.
Fig. S.3a depicts the temporal evolution of the beam centroid at the tail of the beam (k

p

⇠ = 3.15) for all four
cases. The beam centroid amplitude grows exponentially until k

�,0

z ⇠ 35, in agreement with the result provided in
Ref. [10]. However, we find that the growth rate for greater propagation distances is not exponential. In the contrary,
for case S

2a

, the beam centroid reaches a maximum at k

�,0

z ⇠ 70 and then saturates at an amplitude smaller than

the maximum oscillation amplitude. The simple estimate �✏ ⇠
q

2Î
b

/(I
A

�

0

) yields for the decoherence time from

a di↵erential energy change !

�,0

t

d,✏

⇠ 50 (compare Eq. (S.11)), in good qualitative agreement with the simulation
results.

It can also be seen that a sub-percent relative energy spread (0.5% in case S
2b

) already significantly reduces the
beam centroid. An energy spread of 1.0% in case S

2c

damps the centroid amplitude to about half the the value as
compared to case S

2a

. An energy spread of 2.0% in case S
2d

even reduces the centroid oscillation amplitude to a value
lower than the initial beam centroid deviation.

Setup as in C. Huang, et al. PRL 99, 255001 (2007). 
*Mehrling et al., in preparation. 

**T. Mehrling et al., PRL 118, 174801 (2017).

New description of hosing in the blowout

@2Xc

@⇠2
+

k2p
2

[cc(⇠)Xc � cb(⇠)Xb] = 0

New model: Reduced growth!
Excellent agreement with PIC

@2Xb

@t2
+ �(⇠, t)

@Xb

@t
+ ⌦2(⇠, t)(Xb �Xc) = 0



Summary and concluding remarks

• Maxwell’s equations ! phase space moments ! channel centroid equation 

• Predictions by new channel centroid equation are in excellent agreement with PIC 

• The central idea in Maxwell’s moment equations of matter (1867) still resonates in the modern 

era, with applications to low temperature plasmas and to PWFA  

• For further details see: Robson, Mehrling and Osterhoff, accepted for publication in Europ. J. 

Phys. (2017) 
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