

Simulation Study of an LWFA-based **Electron Injector for AWAKE Run II**

Barney Williamson¹, Guoxing Xia¹, Patric Muggli^{2,4}, Stefan Karsch³, Steffen Doebert^{4,} Mohammad Islam¹

MANCHESTER 1824 The University of Manchester

¹University of Manchester, Manchester M13 9PL, UK ; ²Max Planck Institute for Physics, Föhringer Ring 6, München 80805, Germany; ³Ludwig-Maximilians-Universität, Munich 80539, Germany; ⁴CERN, Geneva, Switzerland

Final Energy Spread Preservation in Run II

- The AWAKE experiment is the world's first proton-driven plasma wakefield accelerator¹
- Run 2 aims to demonstrate acceleration of high-quality electron beams², needed for applications³
- Injected bunch should lie entirely within accelerating phase of the p⁺PWFA wakefield to preserve energy spread at injection
- With the space available to electron injector beamline this is challenging with the Run 1 electron injector
- An LWFA can provide fs duration bunches in a compact device and satisfies kA current for beam loading p⁺PWFA wakefield⁴

Possible LWFA electron beam		
Energy	100 MeV	
⊿E/E	10.0 %	
Charge	100 – 200 pC	
σ _z	100 fs	
٤ _n	1 mm mrad	

A shock-front injected LWFA can meet parameter requirements reproducibly

- Injection relies on a transition from a high density to low density region that occurs over a scale λ_p
- Bunch duration of LWFA beam may be very short (≤ 10 fs)

50

Buck, A. et al. Phys. Rev. Lett. 110, 185006 (2013).

- A high electron density could drive its own wake; bunch stretching is needed
- How are these parameters met and optimised with an LWFA?

Beam Generation

To evaluate possible schemes a 2D simulation using PIC code EPOCH has been developed and compared with experimental work in Buck, A. et al. Phys. Rev. Lett. 110, 185006 (2013)

- Includes a model of gas jet density profile used in experiment
- Matlab routines have been written to analyse output; they characterise the energy spectra, charge, emittance and profile of the electron beam from the simulation
- The simulation successfully reproduces experimentally observed electron beam, confirms bunch length

Simulation P	arameters
--------------	-----------

Box size	70 x 70 µm
Long. resolution	0.025 µm (= 0.2 / k ₀)
Trans. resolution	0.025 µm (= 0.1 / k _p)
Macroparticles per cell	10
Global macroparticles	7.84e6
Computing resources provided by STFC Scientific Computing Department's SCARF cluster	

Initial focusing	Conclusions	
 In order to optimise the beam parameters prior to injection focusing will be required, as well a dispersive beamline to stretch the electron bunch 	as a PIC simulation a useful tool to conduct further studies	
	- 'off the shelf' shock-front injected LWFA electron beam will be too short	

- As a first step in designing the focusing elements the free propagation of a shock-front injected LWFA electron beam is simulated in space-charge tracking code ASTRA, scanned over different σ_{τ}
- Simulation and analytical inspection of envelope equation^{5,6} show space-charge to be negligible

$$\sigma'' + \sigma' \frac{\gamma'}{\beta^2 \gamma} + K_r \sigma - \frac{\kappa_s}{\sigma \beta^3 \gamma^3} - \frac{\varepsilon_n^2}{\sigma^3 \beta^2 \gamma^2} = 0$$

Divergence of 1.3 mrad leads to growth of spot diameter to 0.66 μ m in the case of σ_{z} = 10 fs, which remains unchanged. Confirms need for focusing

- Normalised emittance of LWFA-type beams has been shown to grow intrinsically during drift⁷
- ϵ_n has a dependence on energy spread σ_F , transverse bunch size σ_x , and divergence $\sigma_{x'}$, which in parameter regimes of LWFA electron beams can dominate

 $\varepsilon_n^2 = \langle \gamma \rangle^2 \left(\sigma_E^2 \sigma_x^2 \sigma_{x'}^2 + \varepsilon^2 \right)$ [7]

- (≦10 fs)
- Required charge and energy needs a tailored design
- Focusing needed to suppress large divergence, irrespective of beam parameters

Future Work

- Optimse LWFA Design in PIC simulations
- Add dopant to gas mixture, increasing shot-to-shot stability⁸
- Design LWFA scheme to produce longer σ_{τ} at generation
- Design Quadrupole doublet / triplet focusing in ASTRA
- Energy spread and short duration provides opportunity for phase rotation; operating bunch compression in reverse could be used to increase σ_{τ}

- Gschwendtner, E. et al. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 76–82 (2016).
- Adli, E. TOWARDS AWAKE APPLICATIONS : ELECTRON BEAM ACCELERATION IN A PROTON DRIVEN PLASMA WAKE. 2557-2560 (2016)
- 3. Caldwell, A. & Wing, M. VHEeP: A very high energy electron-proton collider based on proton-driven plasma wakefield acceleration. Proc. Sci. 27-NaN-2, (2015).

Muggli, P. et al. Injection of a Lwfa Electron Bunch in a Pwfa Driven By a Self-Modulated Proton Bunch. Proc. IPAC2014 1470–1472 (2014) 5. Serafini, L. & Rosenzweig, J. B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors:mA theory of emittance compensation. Phys. Rev. E 55, 7565–7590 (1997). 6. Fubiani, G., Qiang, J., Esarey, E., Leemans, W. P. & Dugan, G. Space charge modeling of dense electron beams with large energy spreads. doi:10.1103/PhysRevSTAB.9.064402 7. Migliorati, M. et al. Intrinsic normalized emittance growth in laser-driven electron accelerators. Phys. Rev. Spec. Top. - Accel. Beams 16, 1–5 (2013). 8. Thaury, C. et al. Shock assisted ionization injection in laser-plasma accelerators. Sci. Rep. 5, 16310 (2015).

