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Introduction

Today ultra-intense laser-plasma interactions allow extremely compact
acceleration mechanisms of charged particles to relativistic regimes.

In the Wake-Field Acceleration [Tajima,
Dawson 79] electrons accelerate “surfing”
a plasma wake wave driven by a very short
laser pulse or charged particle beam, e.g.
in a supersonic diluted gas jet.

Singling out the relevant parts in parame-
ter space, and then solving PDEs through

PIC or other codes involves huge and costly computations. Any
theoretical insight that can reduce or simplify the job should be welcome!
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Here I’ll argue: with very little computational power can get important
information on the impact of a very short and intense laser pulse onto a
cold diluted plasma:
i) generation of Plasma Wakes;
ii) conditions for the bubble regime, or else
iii) conditions for the slingshot effect [GF et al 2014-16].

We first determine the motion of the plasma electrons up to shortly after
the impact in a plane hydrodynamical model [GF 2014-16] (the pulse is
modeled as a plane traveling-wave the z-direction, i.e. spot size R =∞):
we reduce the system of Lorentz-Maxwell and continuity PDEs into a
family of decoupled systems of non-autonomous Hamilton Equations in
dim 1 (ODE!); achieved neglecting the ions’ motion and the pump
depletion, and adopting ξ = ct−z instead of time t as an independent
variable, electrons’ p0−cpz instead of pz as an unknown.

Solving these Hamilton Equations we derive:
i) how long the hydrodynamical picture holds, when & where it breaks;
ii) the main features of the induced plane plasma WF, with strict lower
bounds for the electron density ne well inside the plasma (in particular,
ne>n0/2 if the initial one ñ0 was uniform).
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Then we use causality and geometric arguments to qualitatively correct
predictions for the ”real world” (R <∞). We suggest that:
1. a ion bubble can arise only at the vacuum-plasma interface and only
with sufficiently small R, ñ0, while
2. with slightly larger R, ñ0 the slingshot effect may occur (backward
expulsion of energetic electrons from the plasma surface).

Point 1. gives a solu-
tion to the problem of ex-
plaining how continuous
PDEs with continuous ini-
tial & boundary condi-
tions inside the bulk can
allow the formation of a
singularity, which devel-
ops into a cavity in ne (the
bubble).
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Plane model

As no particle can travel at speed c, ξ̃(t) = ct−z(t) is strictly growing: we can
adopt ξ = ct − z as the independent parameter on the worldline λ & in EoM.

xe(t, ·)
x̂e(ξ, ·)

initial position X=(X,Y,Z) −−−−→←−−−− x=(x ,y ,z) position at t, ξ

Xe(t, ·)
X̂e(ξ, ·)

must be 1-to-1

Eulerian f (t, x) = f̃ (t,X)= f̂ (ξ,X) Lagrangian observables. Use CGS units.
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Dimensionless: β≡ v
c

= ẋ
c

, γ≡ 1√
1−β2

, 4-vel. u=(u0, u)≡(γ, γβ)=
(

p0

mc2
, p
mc

)
Eqs: Maxwell, continuity and equation of motion of the electron fluid.

Impact of EM plane wave on a plasma at equilibrium; t=0 initial conditions:

nh(0, x)=0 if z≤0, np(0, x) = ne(0, x) ≡ ñ0(z), uh(0, x)=0,

E(0, x) = ε⊥(−z), B(0, x)=k ∧ ε⊥(−z) + Bs , ε⊥(ξ) = 0 if ξ /∈]0, l [.
(1)

h = e, p (p ≡proton). No assumption on the Fourier analysis of the pump ε⊥.
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Aµ, uh, nh will depend only on z , t; ∆xe ≡ xe−X on Z , t.

Then B=k∂z∧A⊥, cE⊥=−∂tA⊥, A⊥(t,z)=−c
t∫
−∞
dt′ E⊥(t′,z) (phys obs!)

Prop. 1 in [GF’14]: Maxwell eqs ∇·E=4πρ, ∂0E
z+4πj z=(∇∧B)z=0 imply

E z(t, z) = 4πe
{
Ñ[Zp(t, z)]− Ñ[Ze(t, z)

}
, Ñ(Z) ≡

∫ Z

0

dZ ′ ñ0(Z ′). (2)

We thus eliminate the unknown E z in terms of the (still unknown) longitudinal
motion. Neglecting the ions’ motion we find Zp(t, z) = z , np(t, x) = ñ0(z).

dpe

dt
= −e

(
E +

ve

c
∧ B

)
& initial cond.

⊥⇒ u⊥e =
e

mc2
A⊥. (3)

So u⊥e in terms of A⊥. Remaining unknowns A⊥, ne , u
z
e , xe are all observables.

A⊥ fulfills 2A⊥ = 4πj⊥ (Landau gauge). Including (1) this amounts to

A⊥−α⊥ = 2πc

∫
dt′dz ′ θ

(
ct−ct′−|z−z ′|

)
θ(t′) j⊥(t′,z ′), (integral eq.) (4)

where α⊥(ξ) ≡ −
∫ ξ

−∞
dξ′ε⊥(ξ′) (α⊥(ξ)→ 0 as ξ → −∞).

rhs=0 for t≤0, because the laser-plasma interaction starts at t=0. Within
small times (to be determined aposteriori) can approximate A⊥(t,z)'α⊥(ct−z).
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It is convenient to use the electron “s-factor” s instead of uz as an unknown:

s ≡ u0−uz = γ−uz . (positive definite!) (5)

Insensitive to rapid oscillations of u⊥∼α⊥; γ,u,β are rational functions of u⊥, s:

γ=
1+u⊥2+s2

2s
, uz =

1+u⊥2−s2

2s
, β=

u

γ
. (6)

Then the left eqs of motion for the electron fluid amount to [GF, DeNicola ’16]

∆̂′(ξ,Z) =
1+v̂

2ŝ2
− 1

2
, ŝ ′e(ξ,Z) =

4πe2

mc2

{
Ñ[ẑe ]−Ñ(Z)

}
, (7)

x̂e(0,X)− X = 0, ûe(0,X) = 0 ⇒ ŝe(0,X) = 1. (8)

Here ∆̂≡ ẑe−Z , v̂≡ û⊥2. (7) is a family parametrized by Z of decoupled ODEs.
Eq (7) can be put in the form of Hamilton equations in 1 ] of freedom:
ξ plays the role of ”time”, (∆,−s) play the role of (q, p).

H(∆, s, ξ;Z) ≡ γ(s, ξ) + U(∆;Z), U(∆;Z)≡ 4πe2

mc2

[
Ñ(Z+∆)−Ñ(Z)−Ñ(Z)∆

]
,

γ(s, ξ)≡ 1

2

[
s +

1 + v(ξ)

s

]
, Ñ (Z) ≡

∫ Z

0

dζ Ñ(ζ)=

∫ Z

0

dζ ñ0(ζ) (Z−ζ).
(9)

(7) is solved numerically where ε⊥(ξ) 6= 0, by quadrature elsewhere.



Introduction Setup & Plane model 3D corrections & discussion References

All other unknowns can be determined explicitly using ŝ, ẑ , in particular

x̂⊥e (ξ,X) = X⊥ +

∫ ξ

0

dy
û⊥(y)

ŝe(y ,Z)
, (10)

ct̂(ξ,Z) = ξ + ẑe(ξ,Z) ≡ Z + Ξ̂(ξ,Z). (11)

Clearly Ξ̂(ξ,Z) is strictly increasing for each Z . Inverting (11) we find
ξ̃(t,Z)=Ξ̂−1(ct−Z ,Z) and e.g. the position of the X-electrons from

xe(t,X) = x̂e [ξ̃(t,Z),X]. (12)

By derivation we obtain several useful relations, e.g.

∂ẑe
∂Z

(ξ,Z) = 1+∂Z ∆̂(ξ,Z),
∂Ze

∂z
(t, z) =

γ̂

ŝ ∂Z ẑe

∣∣∣∣
(ξ,Z)=

(
ct−z,Ze (t,z)

) . (13)

By (13), ∂Z ∆̂>−1 is thus a necessary and sufficient condition for the
invertibilities of ẑe : Z 7→z , x̂e : X 7→x at fixed ξ, of ze : Z 7→z , xe : X 7→x
at fixed t, what justifies the hydrodynamic description adopted so far and
ensures the existence of the inverse function Ze(t,z). Then it is also

ne(t, z)= ñ0[Ze(t,z)]
γ̂

ŝ[1+∂Z ∆̂]

∣∣∣∣∣
(ξ,Z)=

(
ct−z,Ze (t,z)

) . (14)

Approximation A⊥(t,z)'α⊥(ct−z) is acceptable as long as the found motion
makes |rhs(4)|�|α⊥|; otherwise (4) determines the 1st correction to A⊥; etc.
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If ñ0(Z) ≡ n0 = const (7-8) and its solution is in fact Z -independent:

∆′ =
1+v

2s2
− 1

2
, s ′ = M∆, ∆(0)=0, s(0)=1, (15)

where M≡4πe2n0/mc2, v(ξ)≡u⊥2(ξ), and U(∆,Z)≡M∆2/2: copy of the
same relativistic harmonic oscillator. ∂Z ẑe≡1, invertibility Ok, and

Ze(t, z) = z−∆(ct−z).

Solution of (15) for I=1019W/cm2, n0 =2×1018cm−3, λ= .8µm, lfwhm =7.5µm.
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ne(t, z) =
n0
2

[
1+

1+v(ct−z)

s2(ct−z)

]
=

n0
1− βz(ct−z)

, (16)

n(t, z), u(t, z), ... evolve as forward travelling waves. Remarkable consequences:

ne(t, z) >
n0
2
, ne(t, z) ' n0

2
if s2(ct−z)� 1+v(ct−z). (17)
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The wake-field by “rules of thumb”

Solved eq. (7), one can calculate the final energy variation h of the electrons
after the interaction with the pulse, normalized to mc2 (energy gain):

h(Z) = 1− v(l) +

∫ l

0

dξ
v̂ ′(ξ)

2s(ξ)
'
∫ l

0

dξ
v̂ ′(ξ)

2s(ξ)
. (18)

If h� 1 then the main physical features can be expressed by powers of h:

max displacement ∆M =

√
2h

M
, oscill. period TH '

4

c
∆M =

4

c

√
2h

M
, (19)

max el. field Ê z
M = 4πen0∆M = 4πen0

√
2h

M
=
√

8πhn0mc2, (20)

max electron density nM ' 2 n0 h
2 (21)

Can get a sequence of approximations of (∆, s), h even without solving (15):(
∆(0)(ξ), s(0)(ξ)

)
=
(∫ ξ

0
dy v(y)

2
, 1
)

, h(0) =! v(l)
2

is bad; the next one(
∆(1)(ξ), s(1)(ξ)

)
s(1)(ξ) = 1 +

M

2

∫ ξ

0

dy v(y)(ξ − y), h(1) =

∫ l

0

dξ
v ′(ξ)

2s(1)(ξ)
(22)

is better; and so on. They are better for lower n0.
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We can schematize the graph of ne as the polygonal line depicted below: it is
made of isosceles triangles of heignt nM and base b separated by intervals of
length ξH−b ' ξH where ne = n0/2 =const. b is easily determined from
conservation of the total number of electrons, (ξH−b)n0/2 = bnM/2, leading to

b '
√

8/Mh3 = 8/M2∆3
M (23)
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Impact of the pulse on an increasing ñ0(Z )

We assume:

1. ñ0(Z) growing with Z , and ∃Zs>0 s.t.
Z ≥ Zs ⇒ ñ0(Z) ≥ n0 =const.

2. Pulses of duration τ = l/c ≤ TH

TH ≡plasma oscillation period, depends

on osc. amplitude. TH≥T nr
H =

√
πm
n0e2

For Z > ZS ≡ max{Zs ,∆M} eq. (7-8) reduce to (15), and have the same
solution; no collisions between electrons with different Z ,Z ′ > ZS intersect.
1st collision occurs at t = tc and involves electrons with Z =Zc<ZS suitable.
tmc ≡lowest tc arises if ñ0(Z)=n0θ(Z) (worst case). We show tmc > 5

4
TH + Zc

c
.

Summarizing, for t ≤ tc there are collisions nowhere (see fig. 2), the maps
ze(t, ·) : Z 7→ z are invertible, and the hydrodynamic description is justified.

For t > tc the perturbations due to collisions can propagate only with a
velocity vp < c, hence do not affect causally disconnected regions D.
Since the pulse speed is c, the part of the Wake travelling-wave behind the
pulse not affected and looking as in the figures becomes longer and longer.
The Z'0 electrons go very far backwards; also not affected for very long t.
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Figure 1 : Phase portraits for ñ0(Z ) = n0θ(Z ) (n0 =2× 1018cm−3),
v(ξ) = 0. The paths of all Z>0 electrons are cycles around C ' (0, 1).
Those of the Z>∆M electrons do not cross the ∆̂=−Z axis (no exit
from the bulk). The path of the Z =0 electrons is unbounded.
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Figure 2 : Electrons’ worldlines if ñ0(Z )=n0θ(Z ). They first intersect
after 5/4 oscillations induced by the pulse, here at t = tmc '3l/c'56fs.
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Figure 3 : Normalized charge density plot after 37 fs, for pulse intensity
I =1019 W/cm2 & step-shaped initial electron density n0 =2×1018cm−3.
The forward boost of the most external (i.e. small Z ) electrons by the
ponderomotive force has left a layer (here in yellow) containing only ions.
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Figure 4 : The trajectories of the most external (i.e. small Z ) electrons
after a few tens of fs have exited the bulk (z < 0), completely filling the
previously formed ion cavity (here the pulse intensity is I =1019 W/cm2,
the initial electron density is ñ0(Z )=n0θ(Z ), n0 = 2× 1018cm−3).
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Normalized charge density plots of the electrons (blue) and the ions (red)
corresponding to the the figure 4.
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Finite R corrections & discussion

Within a sufficiently small distance R <∞ from the ~z-axis the real laser pulse
is indistinguishable from a plane wave (R =∞) travelling in the ~z-direction.
By causality, the electrons in the cylinder C with axis ~z and radius R
experience no change with respect to the R =∞ until the information about
the different charge distribution contained in the retarded potential reaches
them, i.e. until they remain the causal cone depicted in fig. 5; those along the
~z-axis are the latest to experience any change.
Let te be time of backward expulsion of the first electrons on the ~z-axis hit by
the pulse (X = 0 electrons). If R is sufficiently large, R & tec, a thin bunch of
X ' 0 electrons succeeds in going out of the plasma before their way out can
be obstructed by the Lateral Electrons (LE) outside the surface of the ion
cavity CR created by the pulse (the LE are attracted towards the ~z-axis).

Part of them will succeed in escaping to z = −∞ (slingshot effect).
As a consequence, the ion cavity closes forever behind the pulse.

If R is sufficiently small, R < tec, the Lateral Electrons (LE) attracted towards
the z-axis ~z can reach it, collide around the ~z-axis and close the cavity before
the backward espulsion of any electrons.
Actually, if R is small enough the X = 0 electrons are still moving forward
behind the pulse when the LE reach the ~z-axis: a ion bubble can form.
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Figure 5 : The t = 0 initial data of the R =∞ model coincide with the
real ones on the light blue domain D0

1 at the base. Therefore also all the
physical consequences coincide within the corresponding future Cauchy
development D+(D0

1 ) (shaded region between the blue and light blue
hypersurfaces), here represented in (ρ, z , ct) coordinates (we have
dropped the inessential angle ϕ). The worldlines of the X=0 electrons
(red) remain in D+(D0

1 ) longer than those of off-~z-axis electrons (yellow)
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Schematic picture of the slingshot effect. The effect is enhanced if the

pulse duration τ fulfills τ ∼ TH/2.
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Figure 6 : Fraction ν of expelled electrons vs. the relativistic factor, for
pulse intensity I =1019 W/cm2 & smooth initial electron density with
asymptotic value n0 = 32× 1017cm−3
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