3rd European Advanced Accelerator Concepts Workshop | 24-30 September 2017 | Elba, Italy

FLASHForward **>>** X-2

Beam quality preservation in a plasma booster

<u>Vladyslav Libov</u>^{1,2}, A. Aschikhin¹, J. Dale¹, R. D'Arcy¹, A. Martinez de la Ossa¹, T. Mehrling^{1,2}, J.-H. Roeckemann¹, L. Schaper¹, B. Schmidt¹, S. Schroeder^{1,2}, S. Wesch¹, J. Zemella¹ and J. Osterhoff¹

¹Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ¹University of Hamburg, Germany

Plasma booster for high-energy applications

- > Beam-driven plasma wakefield acceleration (PWFA) is the only path to high-average-power plasma-based accelerators
- > High beam energies requires staging of individual PWFA modules
 → external injection

Demonstration of external injection

> Driver-witness pair using a mask in a dispersive section

> High-efficiency acceleration of the witness beam by 1.6 GeV with final energy spread of ~1%

FLASHForward **>>** X-2

> Key goal is to demonstrate **quality preservation** in external injection in PWFA

Witness bunch, 1 GeV Driver bunch, 1 GeV, >1kA Density ~ $10^{16}-10^{17}$ cm⁻³ Plasma column $\lambda_p \sim 100 \,\mu$ m

See talk A. Knetsch (WG7)

for FLASHForward X-1

> Principal experimental requirements

- \rightarrow Driver-witness pair, separated by a fraction of the plasma wavelength, both sufficiently short
- → Longitudinal and transverse shaping of the driver beam (wake optimisation, transformer ratio)
- \rightarrow Control over centroid offsets (hosing mitigation \rightarrow stability)
- → Transverse matching of the witness (*emittance preservation*)
- \rightarrow Longitudinal shaping of the witness (beam loading \rightarrow low energy spread)
- → Controlled release of the witness (*emittance preservation*)

FLASHForward: a unique PWFA beamline at FLASH

- **> FLASH** is world's first soft X-ray FEL
- → provides *GeV* e⁻ beams of *few kA* currents, *100 fs* durations and *few \mu m emittances* → suitable for PWFA experiments

See talk **J. Osterhoff** (WG1/WG8) for FLASHForward overview

FLASHForward: a unique PWFA beamline at FLASH

> Two magnetic chicanes and a 3rd harmonic module allow flexible tuning of the longitudinal phase space, including generation of triangular current profile

- → transformer ratio / beam loading optimisation
- > Windowless target design → emittance conservation
- > Active plasma lenses for focusing/capturing → emittance conservation
- > Long plasma cells → **driver depletion**
- > Repetition rate up to 1 MHz \rightarrow high repetition rate

See talk **J.-H. Röckemann** (WG5) for **Active Plasma Lenses**

See talk **J. Osterhoff** (WG1/WG8) for FLASHForward overview

FLASHForward in the FLASH2 tunnel (phase I)

Electron beamline installation status

- > The beamline is installed up to a few meters upstream of the target chamber
 - \rightarrow magnets
 - → **diagnostics** (beam position monitors, screen stations, beam loss monitors, charge monitors)
 - → **beam pipe** and vacuum chambers
 - → vacuum system (pumps, shutters, pressure sensors)
- > Installations will be finalised in January 2018
- > First commissioning shifts took place in August/September 2017

> An energy chirp (z-E correlation) is imposed in order to compress beams in the magnetic chicanes
 > This leads to a z-x correlation in the dispersive section of FLASHForward

> A transverse mask (scraper) can therefore be used to split the bunch longitudinally → additional side blocks allow further tuning of the drive/witness pair longitudinal shape

Double bunch generation – scraper design

> A wedge-shaped scraper design was chosen to allows stepless tuning of the driver-witness separation

Double bunch generation – beam-dynamics simulations

- > Detailed **start-to-end simulations** are used to assess feasibility of driver-witness generation suitable for external injection
- > Centroid offsets due to CSR effects must be minimised to avoid the hose instability
- > Tools: ASTRA (FLASH injector), elegant (FLASH linac, FLASHForward beamline), CSRTrack (bends), Geant4 (scraper)

Particle-in-Cell simulations

> Beams from the start-to-end linac simulations are imported into a PiC simulation to evaluate their suitability and to predict their properties after the plasma

Plasma target

- > Windowless design
 → emittance conservation
- > Lengths up to 250 mm
 → driver energy depletion
- > Densities up to $5 \times 10^{17} \text{ cm}^{-3}$

Plasma target

Diagnostics beamline – phase I

Extension (phase II) will include

- → **Transverse-deflecting structure** for full longitudinal diagnostics
- → High-resolution narrow-band electron spectrometer

- > 10 m long to reduce the laser intensity> Also allows focussing the witness beam
- > Space is foreseen after the exit window for laser, betatron, and electron (scintillating screen) diagnostics page 13

Diagnostics beamline – broadband electron spectrometer

- > Essential component to observe wakefield formation and witness acceleration
- > Recycled 1.4 T dipole from the DORIS III ring
- > Resolution was determined using the 3D map of magnetic field (measured at 950A)

First beam in FLASHForward!

/svn/global/commonAll_In_	One_Camera_Expert.xml FLAS	SH.DIAG/CAMERA/14FLFCOMP/	
FLASH.DIAG CAM EXPERT Panel Camera ID: 21Basler avA23	ERA 14FLFCOMP 300-25gmDSY#0030531B8	▼ I4FLFCOMP Sensorboard ▼ 31.0 °C	Guru Back FLASH.DIAG/CAMERA/14FLFCOMP/ Online
		ok	
Camera Connection Server Power On Off Expert	Params W: 2360 H: 1776		Images Start / Stop
Camera	WD Server Timer	Properties Print	Frame 7519 Scale X/Y X Scale Y Scale Y Scale Mage comp. jpeg off Flip: rotation: H 90 V Flip: rotation: H 90 V V Tool Box BG. Subst. Histogram X & Y Spectrum ROI 1 ROI 2 Write Images Write ROIs
	Trigger	Gain	DAQ
Off C	ne Activation	Auto Off	Mode
Src Line1 V Sro Rate [Hz]: 10.1 De	c Line1 ▼ elay ĴĴĴĴĴĴĴŶ.Ŷ Fr Cnt Ĵ	Select All Value \$	Sender: OFF

- > Commissioning started 30.8.2017
- > First beam in the beamline was seen at 2am on 31.8.2017
 - → scintillator profile screen in the dispersive section (therefore the shape)

Used around 40h of beam time to

- > Successfully test
 - → magnet polarities
 - \rightarrow diagnostics
 - \rightarrow control system
- > Achieve beam transmission up to the vacuum safety valve
- > Perform first measurement of the orbit response matrix
- → a test for correctness of the beamline model (and magnet installation/connection)

Summary and Outlook

- > Beam **quality preservation** in a plasma booster is one of the key missing milestones towards application of plasma-based accelerators for high energies
- > FLASHForward is a novel PWFA experiment to study all aspects of a plasma booster
- > Electron beamline is partially **installed** and **commissioned**
- > Detailed start-to-end simulations are performed together with PiC simulations
 → to optimise the driver/witness beam parameters
 → evaluate their evolution in plasma
- > Dispersive section mask installation is foreseen to summer 2018
- \rightarrow first external injection experiments!