EuPRAXIA@SPARC_LAB

design study towards a new compact FEL facility at LNF Massimo.Ferrario@lnf.infn.it On behalf of the study group

Isola d'Elba, 27 September 2017

- D. Alesini, M. P. Anania, R. Bedogni, M. Bellaveglia, A. Biagioni, F. Bisesto, E. Brentegani, B. Buonomo, P.L. Campana, G. Campogiani, S. Cantarella, F. Cardelli, M. Castellano, E. Chiadroni, R. Cimino, R. Clementi, M. Croia, A. Curcio, G. Costa, S. Dabagov, M. Diomede, A. Drago, D. Di Giovenale, G. Di Pirro, A. Esposito, M. Ferrario, F. Filippi, O. Frasciello, A. Gallo, A. Ghigo, A. Giribono, S. Guiducci, S. Incremona, F. Iungo, V. Lollo, A. Marcelli, A. Marocchino, V. Martinelli, A. Michelotti, C. Milardi, L. Pellegrino, L. Piersanti, S. Pioli, R. Pompili, R. Ricci, S. Romeo, U. Rotundo, L. Sabbatini, O. Sans Plannell, J. Scifo, B. Spataro, A. Stecchi, A. Stella, V. Shpakov, C. Vaccarezza, A. Vannozzi, A. Variola, F. Villa, M. Zobov.
- INFN Laboratori Nazionali di Frascati
- A. Bacci, F. Broggi, C. Curatolo, I. Debrot, A. R. Rossi, L. Serafini. INFN Sezione di Milano
- D. Cirrincione, A.Vacchi. INFN Sezione di Trieste
- G. A. P. Cirrone, G. Cuttone, V. Scudieri. INFN Laboratori Nazionali del Sud
- M. Artioli, M.Carpanese, F.Ciocci, D.Dattoli, S.Licciardi, F.Nguyen, S. Pagnutti, A.Petralia, E. Sabia. ENEA Frascati and Bologna
- L. Gizzi, L. Labate. CNR INO, Pisa
- R. Corsini, A. Grudiev, N. Catalan Lasheras, A. Latina, D. Schulte, W. Wuensch. CERN, Geneva
- C. Andreani, A. Cianchi, G. Festa, V. Minicozzi, S. Morante, R. Senesi, F. Stellato. Universita' degli Studi di Roma Tor Vergata and Sezione INFN
- V. Petrillo, M. Rossetti. Universita' degli Studi di Milano and Sezione INFN
- G. Castorina, L. Ficcadenti, S. Lupi, M. Marongiu, F. Mira, A. Mostacci. Universita' degli Studi di Roma Sapienza and Sezione INFN
- S. Bartocci, C. Cannaos, M. Faiferri, R. Manca, M. Marini, C. Mastino, D. Polese, F. Pusceddu, E. Turco. Università degli Studi di Sassari, Dip. di Architettura, Design e Urbanistica ad Alghero
- M. Coreno, G. D'Auria, S. Di Mitri, L. Giannessi, C. Masciovecchio. ELETTRA Sincrotrone Trieste
- A. Ricci. RICMASS, Rome International Center for Materials Science Superstripes
- A. Zigler. Hebrew University of Jerusalem J. B. Rosenzweig. University of California Los Aangeles

- Candidate LNF to host EuPRAXIA (1-5 GeV)
- FEL user facility (1 GeV 3 nm)
- Advanced Accelerator Test facility (LC) + CERN

- 500 MeV by RF Linac + 500 MeV by Plasma (LWFA or PWFA)
- 1 GeV by X-band RF Linac only
- Final goal compact 5 GeV accelerator

	WG O – Project Management 0.1 Executive summary	(M. Ferrario)
	 WG 1 - Electron beam design and optimization Advanced High Brightness Photo-injector HB Linac technology, Linac design and parameters WG 2 - Laser design and optimization FLAME upgrade Advanced Laser systems WG 3 - Plasma Accelerator PWFA beam line LWFA beam line Plasma and Beam Diagnostics 	 (E. Chiadroni) (A. Gallo) (C. Vaccarezza) (M. P. Anania) (L. Gizzi) (A. Marocchino) (A. R. Rossi) (A. Cianchi)
CDR.1 delivery	4.1 Conventional and Plasma driven FEL 4.2 Advanced FEL schemes 4.3 Photon beam lines 4.4 FEL user applications	(V. Petrillo) (G. Dattoli) (F. Villa) (F. Stellato)
expected by Autumn	WG 5 – Radiation sources and user beam lines 5.1 Advanced (dielectric) THz source 5.2 Compton source 5.3 Secondary Particle Sources	(S. Lupi) (C. Vaccarezza) (LNS)?
	5.4 Laser-driven neutron source 5.4 User beam lines WG 6 – Low Energy Particle Physics 6.1 Advanced positron sources 6.2 Fundamental physics experiments, LabAstro 6.3 Plasma driven photon collider	(Cianchi) (P. Valente) (A. Variola) (C. Gatti) (L. Serafini)
	WG 7 - Infrastructure 7.1 Civil Engineering and conventional plants 7.2 Control system 7.3 Radiation Safety 7.4 Machine layout	(U. Rotundo) (G. Di Pirro) (A. Esposito)

Eupra IA

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

See R. Assmann talk tomorrow

Accelerator (X-band EU frequency – 100 Hz?)

												10.5r	n	
							62.5 m RF & powe supplies	r						7.5m
1	~	11.3	m	>< {	3.8 m	×	55 m 12 m	><	1	.3.9 m	>	< 5 m	→ ``	
8n		Injecto	Dr	 Li	inac 1		Compressor		Lir	nac 2		P	lasma	
2	2.2			2.2.2	2.8						2-2-2			2.2.2

- Injector:
 - Gun+solenoid
 - 3x 3m s-band sectons
- Linac 1:
 - 8x 0.5m x-band sections
 - Matching Quads

- Compressor:
 - 2.19° deflection
- Linac 2:
 - 14x 0.5m x-band sections
 - Matching Quads
- Plasma:
 - PMQ or Plasma Lens matching
 - 0.6 m capillary

Photo-injector layout

SPARC-like design: <u>S-band photoinjector</u> consisting of 1.6 cell UCLA/BNL type SW RF gun, equipped with a copper photo cathode and an emittance compensation solenoid, followed by three TW SLAC type sections; other two compensation solenoids surround the first and the second S-band cavities for the operation in the velocity bunching scheme

Beam dynamics simulations have been performed by means of **TSTEP** to take into account space charge degradation effects **in the photo-injector**.

M. Diomede, "Preliminary RF design of an X-Band LINAC for the EuPRAXIA@SPARC_LAB project", Poster, Monday

C. Vaccarezza, "EUPRAXIA at SPARC_LAB: Beam Dynamics studies for the X-band Linac, WG4, Today

Ti:Sa FLAME laser

Parameters of the 500 TW laser

Parameters	FLAME today	FLAME upgraded		
Wavelength [nm]	800	800		
Bandwidth [nm]	60-80	60-80		
Repetition rate [Hz]	10	1-5		
Max energy before compression [J]	7	20		
Max energy on target [J]	4	13		
Min pulse length [fs]	25	25		
Max power [TW]	250	500		
Contrast ratio	10 ¹⁰	10 ¹⁰		

Comparison between the parameters of the actual FLAME system and the upgraded FLAME system.

M.P. Anania, The FLAME laser at SPARC_LAB, WG?, Monday

Capillary Discharge at SPARC_LAB

Plasma source

We preionize the capillary with a preformed plasma prior the main discharge. The initial plasma is formed in a short primary capillary by a high voltage pulse discharge. Part of this plasma and free electrons expanding into a long capillary that is connected to a high voltage capacitor. Since the discharge process follows the Paschen law, the breakdown threshold of the long capillary is lowered and the discharge can develop.

This strategy allow to ionize long capillaries with reasonable applied voltage in controlled and homogeneous way.

F. Filippi, "Gas-filled capillary discharge for tens-centimetre long plasma channel", Poster, Today

Plasma source

This scheme can be reproduced for tens-of-centimetre capillaries. This single unit can be integrated simply by adding more units obtaining up to tens of centimetre capillaries homogenously ionized and controlled independently one to each other, leading to the desired length of plasma (almost 30 cm) with the proper density (10¹⁷ cm⁻³) required for this project.

F. Filippi, "Gas-filled capillary discharge for tens-centimetre long plasma channel", Poster, Today

- Simulations with QFluid¹
- Plasma density: 10^{17} cm⁻³
- Plasma plateau length: 6 cm
- Exponential ramp with characteristic length $\lambda_r = 2.5$ mm
- Ramps span from 10^{14} to 10^{17} cm⁻³ for a total length L_r = 1.75 cm
- Effective accelerating gradient: 9 GV/m

A. Rossi, "High brightness, plasma boosted beams for driving a Free Electron Laser", WG1, Monday

Q-Fluid simulations of LWFA external injection

	Input	Output w/o ramp	Output with ramp
E [MeV]	536	1060	1035
ΔE/E	7 10-4	1.2 10 ⁻²	7 10-4
I _{peak FWHM} [kA]	1,8	1,8	1,8
Q [pC]	30	27	27
σ _{z rms} [μm]	3,7	3,3	3,3
σ _{z FWHM} [μm]	3,3	3,2	3,2
ε _{n tr} [mm- mrad]	0,44	0,47	0,47
I _{peak slice} [kA]	2,1	2,1	2,1

EuPRAXIA@SPARC_LAB: S2E results

• WP1: Low Charge-High Current from the Photoinjector: 30 pC-3KA FWHM per bunch with only velocity bunching, suitable both for Beam Driven and Laser driven acceleration in Plasma,

Beam Parameter	Unit	L1			L2		
		WP1	WP2	WP3	WP1	WP2	WP3
Initial energy	GeV	0.10	0.17	0.17	.21	.28	.51
Final energy	GeV	0.21	0.28	.55	.55	0.55	1.06
Active Linac length	m		6.0			10.0	
Accelerating Gradient	MV/m	20.0	20.0	57.0	36.0	26.8	57.0
RF phase (crest at 0)	deg	-20.0	-20.0	-12.0	-19.5	0	+15.0
Initial rms energy spread	%	0.30	0.22	0.67	0.15	0.22	0.47
Final rms energy spread	%	0.15	0.22	0.47	0.07	0.06	0.09
rms bunch length	mm	0.006	0.020	0.112	0.006	0.004	0.020

WP1 case: 30 pC beam evolution from Cathode to Undulator

• 500 MeV by RF Linac + 500 MeV by Plasma

• 1 GeV by RF Linac only (EuSPARC)

KYMA Δ undulator: designed by ENEA Frascati, constructed by Kyma Trieste, tested on beam at SPARC_LAB

• DELTA like undulator $\lambda_u = 1.4$ cm, gap g = 5mm, Br = 1.22T.

Undulator tested in two stage SASE-FEL: 630nm to 315 nm

FEL driven by LWFA

FEL driven by PLASMA

	Units	1 GeV PWFA	1 GeV LWFA
		with Undulator	with Undulator
		Tapering	Tapering
Bunch charge	nC	29	26.5
Bunch length rms	fs	11.5	<u> </u>
Dunch Engin This Dool: ourront	13 12 A	2.6	3.15
I Cak cuitcht		10	10
Rep. rate	HZ 0/	10	10
Kms Energy Spread	[%] 0	0.73	0.81
Slice Energy Spread	%	0.022	0.015
Average Rms norm. emittance	μm	0.6	0.47
Slice norm. emittance	μm	0.39-0.309	0.47
Slice Length	μm	1.39	1.34
Radiation wavelength	nm	2.79	2.7
ρ	x 10 ⁻³	2	2
Undulator period	cm	1.5	1.5
K		0.987	1.13
Undulator length	m	30	30
Saturation power	GW	0.850-1.2	1.3
Energy	μJ	63	63.5
Photons/pulse		8.8 x 10 ¹¹	8.6 x 10 ¹¹
Bandwidth	%	0.35	0.42
Divergence	µrad	49	56
Rad. size	μm	210	160
Brilliance per shot	(s mm ²	$0.83 \ge 10^{27}$	$1.22 \text{ x} 10^{27}$
	$mrad^2bw$ (‰)) ⁻¹		

FEL driven by X-band only

	Units	1 GeV with X- band linac only 100 pC	1 GeV with X- band linac only 200 pC
Bunch charge	pC	100	200
Bunch length rms	fs	38.2	55.6
Peak current	kA	2.	1.788
Rep. rate	Hz	10	10
Rms Energy Spread	%	0.1	0.05
Slice Energy Spread	%	0.018	0.02
Average Rms norm.	μm	0.5	0.5
emittance			
Slice norm. emittance	μm	0.35-0.24	0.4-0.37
Slice Length	μm	1.25	1.66
Radiation wavelength	nm	2.4 (0.52 keV)	2.87(0.42 keV)
ρ	x 10 ⁻³	1.9(1.7)	1.55(1.38)
Undulator period	cm	1.5	1.5
K		0.987	0.987
Saturation length	m	15-25	16-30
Saturation power	GW	0.361-0.510	0.120-0.330
Energy	μJ	48-70	64-177
Photons/pulse		5.9-8.4 x 10 ¹¹	$9.3-25.5 \ge 10^{11}$
Bandwidth	%	0.13-2.8	0.24-0.46
Divergence	μrad	17.5-16	28-27
Rad. size	μm	65-75	120-200
Brilliance per shot	(s mm ²	Fx3.8-2.2 10 ²⁸	Fx2.5-1.4 11 ²⁷
	$mrad^2bw$ (‰)) ⁻¹		

EuPRAXIA@SPARC_LAB

X-band RF technology implementation, CLIC collegizations Science with short wavelength Free Electron Laser (FEL) Physics with high power lasers and secondary particle generation R&D on compact radiation sources for medical applications Detector development for X-ray Science with THz radiation sources R&D on polarized positron sources Quantum aspects of beam physics, Quantum-FEL development R&D in accelerator physics and industrial spin - off Laser driven neutron source