Electrical field generated during interaction of high intensity laser with structured targets

A. Zigler Hebrew University of Jerusalem, Israel and SPARC Lab, INFN Frascati Italy

European Advanced Accelerators Conference Elba Italy Sept. 2017 Collaborators : R. Pompili, M.P. Anania F. G Bisesto, A. Curcio, M. Ferrario

FLAME Laser -

SPARC_Lab INFN Frascati, Italy

M. Botton, Z. Henis, E. SchleiferHebrew Univ. ofY. Feber, Y. HefetzJerusalem, Israel

Proton energy vs. laser power

Zigler et al PRL 2011, 2013

Enhanced proton acceleration from snow micro-wire targets

The higher proton energy can be attributed to several effects:

• The density gradient generated by the laser prepulse – verified by experiment

 Localized field <u>enhancement</u> near the tip of the snow needle ? - this talk

Laser – wire interaction by 2D PIC simulations TURBOWAVE*

Laser: 88 fs (32 + 24 + 32), 0.8 μm, 4-5 μm spot size, 2.5·10¹⁷ – 2.5·10¹⁹ W/cm²

The core of $100 \cdot n_{cr}$, : ellipsoid ~ 0.1-0.2µm x 1-2µm . The critical density contour: ellipsoid ~ 1-2µm x 10µm .

*TURBOWAVE, Gordon et al., IEEE Trans. Plasma Sci. 35, 1486 (2007).

Target charge and the electric field in the case of short-pulse interaction with a solid *target**

$$\epsilon_0 \Delta \phi_{th} = -e \left(n_i - n_e \exp(e\phi_{th}/T_h) \right)$$

 ϕ_{th} decrease with cloud dilatation and temperature (Collisions +recombination)

For our laser parameters x10¹⁸W/cm², the estimate of hot electrons : $kT_h \sim 300 - 500$ KeV Thus* : $e \phi_{th} > 6 - 10$ MeV will be able to escape * A. Poye' et al PHYSICAL REVIEW E 91, 043106 (2015) Can we measure the temporal profile of an electrical charge generated during the interaction of a high intensity laser pulse ? YES, WE CAN!

- Possible approach use of Electro Optical Sampling EOS Requirements:
- 30 fs synchronization between the main (interacting) beam and the probe beam
- 2. Spatial overlap better than 10 microns

EOS Spatial Encoding Setup

- Laser crosses the crystal with an incident angle of 30° → one side of the laser pulse arrives earlier on the EO crystal than the other by a time difference Δt.
- · Coulomb field inducing birefringence is encoded in the spatial profile of laser pulse
- · Benefits: simple, no high energy laser needed.
- Crossed Polarizer Setup

• 1

Measured intensity is equal to
$$I_{det}$$
=

$$I_{det} = I_{laser} \sin^2 \Gamma \propto E_{THz}^2$$

SINGLE-SHOT ONLINE MONITOR FOR THE HOT ELECTRON CLOUD

Schematics for measuring quantity and temporal evolution of the escaping electrons

Interpretation of electro-optic signals (longitudinal view)

Interpretation of electro-optic signals (transverse view)

Detection of electro- optic signals

- Picosecond time-window → particle selection by changing the probe delay
 - Detection only of emitted fast electrons (no protons/ions, gammas, late electrons)
- Encoding process results in curved signals

FLAME LASER SPARC_LAB, INFN Frascati

- Laser energy 2-4 Joules
- Duration 35-40 fsec
- Spot size ~ 30 microns

- Targets : Al foil 11 microns
 - St. St Blade (edge ~ 1micron)
 - Needle tip < 10 microns

4 - XYZ (motor), 6 CCD cameras, EOS, Electron spectrometer, CR39

Blade target

Influence of the target shape on the escaping electrons

ND filter added for recording images b and c The main laser parameters are the same in all cases.

(R.Pompili et al Scie. Rep 2016)

Influence of the target shape on the escaping electrons

Target	I_L	$oldsymbol{Q}_e$	ϵ_{e}
shape	(W cm ⁻²)	(nC)	(MeV)
Planar	2×10^{18}	1.2^*	7 ± 1
		3^{**}	1.0 ± 0.1
Wedged	2×10^{18}	2.0^{*}	7 ± 1
		0.3^{**}	0.8 ± 0.1
Tip	2×10^{18}	7 *	12 ± 2

Q_e charge in the first (*) "bunch" only, (**) the second "bunch" These are the electrons that escaped the potential barrier.

Can we use this diagnostic to measure the produced electrical fields?

300fsec

Measurements of electrical fields

Measured electrical fields I~ 10¹⁸W/cm²

Charge~ 2nCAverage energy~ 7 MeDuration~400 f

~ 2nC ~ 7 MeV (TOF) ~400 fs (fwhm).

~ 0.8 % of total charge

 $Q_e \sim 2 \text{ nC}$ - the positive surface charge Q_i induced on the target surface A surface charge density $\sigma_T = Q_e / \pi r_L^2$ thus Electric field $E_T \sim 0.6 \text{ TV/m}$.

Escape only few electrons with energies ~ 5 MeV as confirmed by PIC

Timeline of the radiation pulse evolution

Measured Magnetic Field (TIFR)* <u>Aluminium film coated glass</u>

EOS Measured Electrical Field

I ~ 5 10¹⁸W/cm²

* Courtesy of Ravi Kumar TIFR, India $I \sim 0.2-2 \ 10^{18} W/cm^2$

Maximal measured signal – 0.8 MV/m corresponding to ~ **0.6TV/m** at the source

Scaling of E_T peak amplitudes with laser energy. I~ x 10¹⁸W/cm²

Wedge (blade) Target The fit is calculated according to the power law $\mathbf{y} = \mathbf{a} \ \mathbf{x}^{\mathbf{b}}$, with $\mathbf{b} = 0.30$

Total Electrical field I =10¹⁸W/cm²

T= 86 fsec

Total Electrical field , I =10¹⁸W/cm²

T= 350 fsec

Summary

- We measured the quantity, duration and temporal evolution of electrons that left the target at the beginning of interaction with high intensity laser
- Target structure effecting the quantity and energy of escaping electrons - pointing out to - field enhancement
- For the <u>same</u> laser intensity we measured 7nC of escaped electrons from a needle tip of in comparison 1.2 nC from thin foil
- Evolution of electrical fields resulted from interaction of intense ultra short laser pulse measured with sub-picosecond resolution

HLI 2017 Conference on High Intensity Laser and attosecond science in Israel Tel-Aviv, December 11th-13th, 2017