Measurement of transverse wakefields in a positron-driven hollow channel

Carl A. Lindstrøm, University of Oslo on behalf of FACET E200 collaboration EAAC Sep 2017, Elba, Italy

Artwork by SLAC National Accelerator Laboratory

Measurement of transverse wakefields in a positron-driven hollow channel

EAAC 2017 - Elba, Italy - Sep 25, 2017

on behalf of the E200 collaboration

Carl A. Lindstrøm PhD Student University of Oslo, Department of Physics and FACET at SLAC

Supervisor: Erik Adli

Why study the hollow plasma channel?

• Conventional plasma wakefield acceleration is promising in many respects, but it is not a complete solution for an electron-positron collider.

- Wakefields ideal for electrons cannot be replicated for positrons due to the charge asymmetry of a plasma.
- Recent work (S. Corde, FACET 2015) has shown acceleration of positrons, but emittance preservation is still a challenge.

Why study the hollow plasma channel?

Image source: Artwork by SLAC National Accelerator Laboratory for Spencer Gessner.

- A hollow plasma channel is a proposed method to symmetrize the charge response and allow high gradient positron acceleration.
- Principle:
 - A positron bunch propagates in the centre of the hollow plasma channel
 - The channel wall is perturbed, driving an oscillating longitudinal wakefield
 - A trailing positron bunch is placed in the accelerating phase of the wakefield
- Benefit of hollow plasma channels: In principle, no focusing forces inside

Measurement of transverse wakefields in a positron-driven hollow channel – Carl A. Lindstrøm – Sep 25, 2017

Challenge: Misaligned beams

- Drive bunches perfectly aligned to the channel axis will give zero transverse force everywhere.
- However, misaligned drive bunches will drive strong dipole-like (transversely uniform) oscillating transverse wakefields.
- This leads to beam deflection and beam loss.
- This problem gets rapidly worse with stronger accelerating fields (transverse force scales faster with smaller channel radius):

Note: Linear model departs from simulation when electrons move significantly.

S

FACET experiments

• The Facility for Advanced aCcelerator Experimental Tests (FACET) at SLAC operated during 2012-2016.

- - 20 GeV beam (electrons and positrons)
 - <u>Two-bunch</u> longitudinal structure (W-chicane)
 - Very <u>dense</u>: 3 nC in (20 μ m)³
 - -~10 TW ionization laser
 - Lithium and hydrogen/helium/argon plasma sources
- Many high impact results
 - High efficiency PWFA acceleration (Litos, Nature, 2014)
 - Multi-GeV positron acceleration (Corde, Nature 2015)
 - Trojan Horse injection (TBP, see talk by D. Ullmann)
 - Hollow channel positron acceleration (TBP, this talk)
- FACET-II will continue these investigations from 2019.

Aerial view of the SLAC linac. FACET took up the first 2 km. Image source: SLAC

The E225 experiment

- One of these experiments was the E225 Hollow Channel experiment, lead by Spencer Gessner.
- E225 successfully demonstrated acceleration of a trailing positron bunch in a positron driven hollow plasma channel.
- Transverse wakefields were also measured in the E225 experiment.

Spencer Gessner (left) and Sebastien Corde (right) at FACET tunnel, SLAC. Image source: SLAC National Accelerator Laboratory

Learn more about E225 experiment from **Spencer Gessner's poster** in the **Wednesday** poster session!

Our focus: Transverse wakefields

It is important to measure it experimentally to verify our models.

This is a starting point for designing mitigation strategies.

E225 – Experimental setup

- The SLAC linac provided two 20 GeV bunches, made from one bunch using a beam notching device.
- The FACET laser (up to 10 TW, 60 fs pulses) was adjusted down to ensure no ionisation in the channel.
- A lithium oven was set to give a neutral gas density of 3x10¹⁶ cm⁻³ (but was necessarily fully ionized).

The experiment

- Our goal was to measure the how the transverse wakefield varied longitudinally.
- The probe bunch observing the wakefield is deflected angularly (kicked) when the channel and the drive bunch are relatively offset.
- The experiment performed was:
 Transverse channel offsets
 for various bunch separations
 - The channel (250 µm radius) was offset by transverse laser jitter (20-40 µm rms)
 - The bunch separation was varied by stretching the bunch and adjusting the notching device.
- Diagnostics:
 - Laser offset imaged downstream (laser cameras).
 - Probe kick measured on a spectrometer (in the non-dispersed plane).
 - Bunch separation measured using an **electro-optical sampler**.

Prediction:

Experiment (2D "scan"):

Varying bunch separations (scanned)

Observed data (deflection vs. channel offset)

- For each bunch separation, a correlation between channel offset and probe bunch angular deflection was observed.
- The slope of this correlation is proportional to the transverse wakefield per offset at the z-location of the probe bunch.

Measurement of transverse wakefields in a positron-driven hollow channel - Carl A. Lindstrøm - Sep 25, 2017

Another independent measurement

- An independent measurement is beneficial (due to high complexity).
- It is possible to estimate the transverse wakefield per offset from the measured longitudinal wakefield, via the Panofsky-Wenzel theorem and the linear model.

Estimate of transverse from longitudinal wakefield:

$$\frac{\partial W_x}{\partial z} = \frac{\partial W_z}{\partial x} \quad \stackrel{\text{Integrate (++)}}{\longrightarrow} \quad \frac{W_x(z)}{\Delta x} \approx -\frac{\kappa(a,b)}{a^2} \int_0^z W_z(z') dz' \quad \text{where} \quad \kappa(a,b) = \frac{4\chi_{\perp}^2 - 2}{\chi_{\parallel}^2 - 1}$$

- Not perfect: Assumes linear model, breaks down far behind the drive bunch.
- Provides verification of numerical calibrations, etc.

Panofsky-Wenzel theorem:

• The longitudinal wakefield was measured by the energy change of the probe bunch (on a spectrometer).

The final results

- Plasma density determined by a wavelength fit (10% ionization = 3×10^{15} cm⁻³)
- Good fit, largely consistent with theory. Some discrepancy at larger separations.

Measurement of transverse wakefields in a positron-driven hollow channel - Carl A. Lindstrøm - Sep 25, 2017

Discussion and implications

- Overall, the measurement agrees with the theoretical models.
- Simulation-based parameter scans indicate that the <u>discrepancy</u> at large separations can possibly be <u>explained by using a more complex radial plasma shape</u> (not possible to exclude with our diagnostics).
- Implication: There is indeed a strong transverse wakefield.
- Exploiting plasma non-linearities may be the way forward to designing mitigation strategies. Suggestions include:
 - Nearly hollow channel
 - Alternatively: External focusing (BNS damping)
 (many good proposals by Schröder et al., BELLA/LBNL)
- For a more detailed report and discussion on our result: we will shortly be submitting a manuscript to PRL.

Thanks for your attention!

