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Why study the hollow plasma channel?

• Conventional plasma wakefield acceleration is promising in many respects, but it is 
not a complete solution for an electron-positron collider.
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• Wakefields ideal for electrons cannot be replicated for positrons due to the charge 
asymmetry of a plasma. 

• Recent work (S. Corde, FACET 2015) has shown acceleration of positrons, but 
emittance preservation is still a challenge.

Image source:  
M. Litos et al., Nature 515, 92-95 (2014) 

Image source:  
S. Corde et al., Nature 524, 442-445 (2015).
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• A hollow plasma channel is a proposed method to symmetrize the charge response and 
allow high gradient positron acceleration. 

• Principle:  
–  A positron bunch propagates in the centre of the hollow plasma channel 
–  The channel wall is perturbed, driving an oscillating longitudinal wakefield  
–  A trailing positron bunch is placed in the accelerating phase of the wakefield 

• Benefit of hollow plasma channels: In principle, no focusing forces inside
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Why study the hollow plasma channel?

Image source: Artwork by SLAC National Accelerator Laboratory for Spencer Gessner.
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Challenge: Misaligned beams

• Drive bunches perfectly aligned to the channel 
axis will give zero transverse force everywhere. 

• However, misaligned drive bunches will drive 
strong dipole-like (transversely uniform) 
oscillating transverse wakefields. 

• This leads to beam deflection and beam loss. 

• This problem gets rapidly worse with stronger 
accelerating fields (transverse force scales 
faster with smaller channel radius):
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QuickPIC simulation:
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FACET experiments

• The Facility for Advanced aCcelerator Experimental Tests (FACET) 
at SLAC operated during 2012-2016. 

• – 20 GeV beam (electrons and positrons)  
– Two-bunch longitudinal structure (W-chicane)  
– Very dense: 3 nC in (20 µm)3  
– ~10 TW ionization laser  
– Lithium and hydrogen/helium/argon plasma sources 

• Many high impact results  
– High efficiency PWFA acceleration (Litos, Nature, 2014)  
– Multi-GeV positron acceleration (Corde, Nature 2015) 
– Trojan Horse injection (TBP, see talk by D. Ullmann) 
– Hollow channel positron acceleration (TBP, this talk)  

• FACET-II will continue these investigations from 2019.
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Aerial view of the SLAC linac. FACET took up the first 2 km. 
Image source: SLAC
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The E225 experiment

• One of these experiments was the 
E225 Hollow Channel experiment,  
lead by Spencer Gessner. 

• E225 successfully demonstrated 
acceleration of a trailing positron 
bunch in a positron driven hollow 
plasma channel. 

• Transverse wakefields were also 
measured in the E225 experiment. 
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Spencer Gessner (left) and Sebastien Corde (right) at FACET tunnel, SLAC.
Image source: SLAC National Accelerator Laboratory

Learn more about E225 experiment 
 from Spencer Gessner’s poster
in the Wednesday poster session!
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Our focus: Transverse wakefields

It is important to measure it experimentally to verify our models.  

This is a starting point for designing mitigation strategies.
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E225 – Experimental setup

• The SLAC linac provided two 20 GeV bunches, made from one bunch using a beam notching device. 

• The FACET laser (up to 10 TW, 60 fs pulses) was adjusted down to ensure no ionisation in the channel. 

• A lithium oven was set to give a neutral gas density of 3x1016 cm-3 (but was necessarily fully ionized).
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The experiment

• Our goal was to measure the how the 
transverse wakefield varied longitudinally. 

• The probe bunch observing the wakefield is 
deflected angularly (kicked) when the channel and 
the drive bunch are relatively offset. 

• The experiment performed was:  
Transverse channel offsets  
for various bunch separations 
–  The channel (250 µm radius) was offset by 
transverse laser jitter (20-40 µm rms) 
–  The bunch separation was varied by stretching the 
bunch and adjusting the notching device. 

• Diagnostics:  
– Laser offset imaged downstream (laser cameras).  
– Probe kick measured on a spectrometer  
    (in the non-dispersed plane). 
– Bunch separation measured using an  
    electro-optical sampler.
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Observed data (deflection vs. channel offset)

• For each bunch separation, a correlation between channel offset and probe bunch angular deflection was observed. 

• The slope of this correlation is proportional to the transverse wakefield per offset at the z-location of the 
probe bunch.
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Another independent measurement

• An independent measurement is beneficial (due to high complexity). 

• It is possible to estimate the transverse wakefield per offset from the measured longitudinal 
wakefield, via the Panofsky-Wenzel theorem and the linear model.

12

@W

x

@z

=
@W

z

@x

W

x

(z)

�x

⇡ �(a, b)

a

2

Z
z

0
W

z

(z0)dz0 (a, b) =
4�2

? � 2

�2
k � 1

where

Panofsky-Wenzel theorem: Estimate of transverse from longitudinal wakefield:

Integrate (++)

• Not perfect: Assumes linear model, breaks down far behind the drive bunch. 

• Provides verification of numerical calibrations, etc. 

• The longitudinal wakefield was measured by the energy change of the probe bunch (on a spectrometer).
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The final results
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• Plasma density determined by a wavelength fit (10% ionization = 3x1015 cm-3) 

• Good fit, largely consistent with theory. Some discrepancy at larger separations.
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Discussion and implications

• Overall, the measurement agrees with the 
theoretical models. 

• Simulation-based parameter scans indicate that the 
discrepancy at large separations can possibly be 
explained by using a more complex radial plasma shape 
(not possible to exclude with our diagnostics). 

• Implication: There is indeed a strong transverse wakefield. 

• Exploiting plasma non-linearities may be the way forward 
to designing mitigation strategies. Suggestions include: 
–  Nearly hollow channel 
–  Alternatively: External focusing (BNS damping)  
(many good proposals by Schröder et al., BELLA/LBNL) 

• For a more detailed report and discussion on our result: 
we will shortly be submitting a manuscript to PRL.
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Thanks for your attention!


