Particle acceleration in twisted plasma waves with orbital angular momentum

J.Vieira¹

J.T. Mendonça¹, F. Quéré²

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon **Portugal**

² LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette France

web.ist.utl.pt/jorge.vieira || epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

The topological freedom is an unique property of the plasma

cannot be currently found in conventional devices

Plasma waves can have any shape

Plasma waves are sustained by free electrons $_{^{12\,c/\omega_{P}}}$

Wakefields in conventional devices are sustained by metallic parts

Implications of wake topology

Plasma waves are ubiquitous

- Fundamental plasma processes wave-particle interactions
- Nonlinear optics
- Accelerators and light sources

- One-dimensional waves widely explored, require standard Gaussian drivers
- Plasma waves with non-trivial topologies unexplored, require non-Gaussian drivers

Changing the **topology of the plasma can** have deep ramifications **and transform** the outputs of **plasma accelerators and radiation sources**

The orbital angular momentum of light (OAM) **I** LISBOA

Orbital angular momentum

M. Padgett et al., Phys. Today 57(5), 35 (2004)

Goal: to propose new configuration that allows transfer the angular momentum of the laser to a relativistic plasma wakefield carrying OAM

Conditions to excite a twisted wakefield

(Forward) Raman scattering

OAM transfer requires different photons (with different frequencies) carrying different OAM levels

Light spring with $\Delta \ell = \mathbf{I}$

Light spring with $\Delta \ell = 2$

Images adapted from G. Pariente, F. Quéré, Optics Letters 40 2037 (2015) Jorge Vieira | E-AAC Isola d'Elba, Italy | September 26, 2017

Generation of an ultra-short light spring

Mathematical model for simulations and theory

Beating two Laguerre-Gaussian modes

 $a^{2} \propto a_{r,\ell}^{2} + a_{r,\ell+\Delta\ell}^{2} + \\ + 2a_{r,\ell}a_{r,\ell+\Delta\ell} \cos\left[\Delta k(ct-x) + \Delta\ell\theta + \Delta\varphi(x)\right]$

 Δ I is the OAM difference between the two modes Δ k is the wavenumber difference $\Delta \phi$ is a phase difference

*G. Pariente, F. Quéré, Optics Letters 40 2037 (2015)

OSIRIS 3.0

osiris framework

•

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis Infrastructure
- Developed by the osiris.consortium • \Rightarrow UCLA + IST

code features

- Scalability to ~ 1.6 M cores
- SIMD hardware optimized
- Parallel I/O
- Dynamic Load Balancing
- QED module •
- Particle merging •
- GPGPU support
- Xeon Phi support

UCLA **Ricardo Fonseca**

ricardo.fonseca@tecnico.ulisboa.pt **Frank Tsung** tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

Twisted wakefield structure

Panofksy-Wenzel theorem

Transverse force acting on relativistic particle

$$\nabla_{\perp} E_x = \frac{\partial \mathbf{W}_{\perp}}{\partial \xi}$$

Transverse wakefield

$$\mathbf{W}_{\perp} = \mathbf{E}_{\perp} + (\mathbf{e}_x \times \mathbf{B})_{\perp}$$

OAM wakefield

Radial focusing (betatron motion)

$$\frac{\partial E_x}{\partial r} = \frac{\partial W_r}{\partial \xi} \propto \frac{\partial \phi}{\partial r}$$

Azimuthal force **new!** $\frac{1}{r}\frac{\partial E_x}{\partial \theta} = \frac{\partial W_\theta}{\partial \xi} \propto \frac{\ell_p}{r}\phi$

Relativistic beams accelerated in OAM wakes

Hamiltonian formulation

Hamiltonian of a charged particle

$$\mathcal{H} = m_e c^2 \gamma + e\phi(r,\theta,\xi)$$

Twisted wakefield structure

$$\phi = \phi(v_{\phi}t - x + \ell_p\theta) = \phi(u)$$

Hamilton's equations

$$\frac{\mathrm{d}\mathcal{P}_x}{\mathrm{d}t} \simeq \frac{\mathrm{d}p_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial x} = \phi'(u)$$
$$\frac{\mathrm{d}\mathcal{P}_\theta}{\mathrm{d}t} \simeq \frac{\mathrm{d}L_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial\theta} = -\ell_p\phi'$$
$$\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = \frac{\partial\mathcal{H}}{\partial t} = v_g\phi'$$

Constants of motion

Energy
$$\gamma \left(1 - v_{\phi} v_x / c^2\right) = 1 + \Delta \phi / m_e c^2$$

Ratio of angular momentum flux to energy

$$\frac{\Delta L_x}{\Delta p_x} = \frac{\ell_p}{k_p} \Rightarrow \frac{\Delta L_x}{E} = \frac{\ell_p}{\omega_p}$$

Angular momentum is quantised.

Simulations confirm OAM quantisation

Beams have a vortex density structure

Similar to twisted light

Ratio of angular momentum flux to energy flux for light

$$\frac{\mathbf{J}}{c\mathbf{P}} = \frac{\ell}{\omega_0}$$

L. Allen et al., PRA 11 8185 (1992)

Ratio of angular momentum to energy for beam particle

$$\frac{\Delta L_x}{E} = \frac{\ell}{\omega_p}$$

Vortex beam electrons move as a twisted ray of light

Energy gain of the vortex beam

Lower energy gain

Energy gain

$$\Delta\gamma\propto \frac{1}{c^2(1+\Delta\ell^2/r^2)-v_\phi^2}\leq 2\gamma_\phi^2$$

decreases with the plasma wave OAM

Simulation confirmation

Reduced dephasing length

Transverse slide of longitudinal wakefield

Dephasing along the axial direction and also along the azimutal direction e_{θ}

Particles dragged along $\mathbf{e}_{\boldsymbol{\theta}}$ due to the new azimuthal wakefield component $E_{\boldsymbol{\theta}}$

Light springs spins in a plasma channel

Twisted wavefronts can spiral in a plasma channel causing the rotation of the light spring

Two key directions set wakefield response:

rotation orientation: set by the OAM of light spring modes OAM orientation: set by the OAM difference between light spring modes

Wakefield phase velocity depends the relative orientation between these two rotational directions

Wakefield phase velocity depends the relative sign between ℓ and Δ ℓ

Wakefield phase velocity depends the relative sign between ℓ and Δ ℓ

$$\frac{v_{\phi,\text{wake}}}{c} = \left[1 - \frac{k_p(0)^2}{2k_0^2} - \frac{2\left(1 + |\ell + \Delta \ell|\right)}{k_0^2 w_0^2} + \frac{2\left(|\ell + \Delta \ell| - |\ell|\right)}{k_0 w_0^2 \Delta k}\right]$$

Energy gain control

TÉCNICO

LISBOA

IJİ

Conclusions and future directions

Plasma wave topology is a new degree of freedom that impacts accelerators and light sources

Light spring laser pulses as drivers for twisted plasma waves

Generation of relativistic vortex bunches with quantised OAM levels

Rotation of light spring enable all optical control of the wake phase velocity

Additional questions motivated by this work

. . .

wakefield excitation by relativistic vortex bunches twisted THz generation using vortex beams vortex bunch magnetic moments and interaction with magnetic fields

Thank you!

