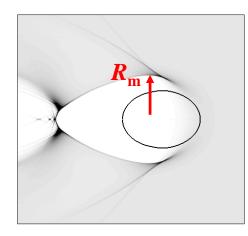
Optically controlled laser-plasma electron accelerators for compact γ - ray sources

Serge Kalmykov


I. Ghebregziabher¹, X. Davoine², B. A. Shadwick³

¹ Pennsylvania State University, Hazleton, PA, USA

² CEA, DAM, DIF, Arpajon, France

³ Department of Physics & Astronomy, University of Nebraska – Lincoln, Lincoln, NE, USA

3rd European Advanced Accelerator Concepts Workshop, La Biodola, Isola d'Elba, Italy WG 6, 26 September, 2017

Laser pulse

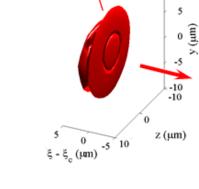
Laser-plasma acceleration – transverse matching provides partial control

Controlling transverse effects:

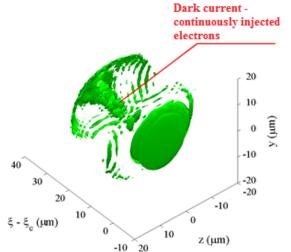
Match the pulse spot size to

$$R_{\rm m} = 2^{3/2} k_p^{-1} (P/P_{\rm cr})^{1/6} >> k_p^{-1}$$

Stable self-guiding & Full electron cavitation


Longitudinal effects

 red-shift of the pulse leading edge & self-compression due to negative GVD of radiation in plasma –


remain uncontrolled

- \Rightarrow Reduced phase velocity of the bubble
- \Rightarrow Early electron dephasing, limited energy gain
- ⇒ Massive continuous self-injection

W. Lu et al., Phys. Rev Accel. Beams 10, 061301 (2007) 2

10

Matching strategy leads to unfavorable energy scaling

Match pulse length and spot size to make electrons dephase as the pulse depletes:

$$\tau_L = 2R_{\rm m}/(3c)$$

Energy gain at dephasing/depletion:

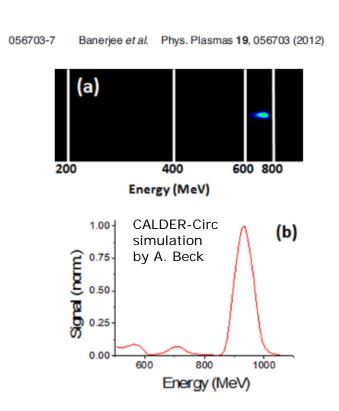
Robust self-guiding & self-injection:

 $\Delta E \,[\text{GeV}] = 0.125 \, (P[\text{PW}])^{1/3} \, (n_{20} \, \lambda_{\text{um}}^2)^{-2/3}$

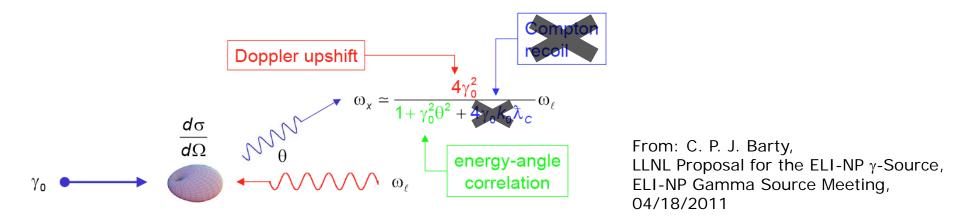
 $P/P_{\rm cr} > 10 \implies n_{20} \lambda_{\mu m}^2 > 1.8 \times 10^{-3} (P[PW])^{-1}$

Stringent scaling of the energy gain:

Δ**E** (GeV) < **8.6 P**[PW]


 $\Delta E \approx 1 \text{ GeV} \qquad \Rightarrow \qquad P \approx 120 \text{ TW}$ $\tau_L \approx 32 \text{ fs}$

 $L_{\text{dephasing}} \approx 0.7 \text{ cm}$


3

Regime is accessible, but

the repetition rate is <<< 10 Hz

Inverse Compton (Thomson) scattering and its requirements for e-beams

• Photon flux $> 10^6$ /shot/full bandwidth

E-beam 5-D brightness >10¹⁶ A/m² [A. Cianchi *et al.*, *NIM A* 829, 343 (2016)] Sub-% energy spread in the e-beam

• Photon energy 10-20 MeV – challenge

GeV e-beams needed – scaling suggests using PW-/kJ-scale pulses

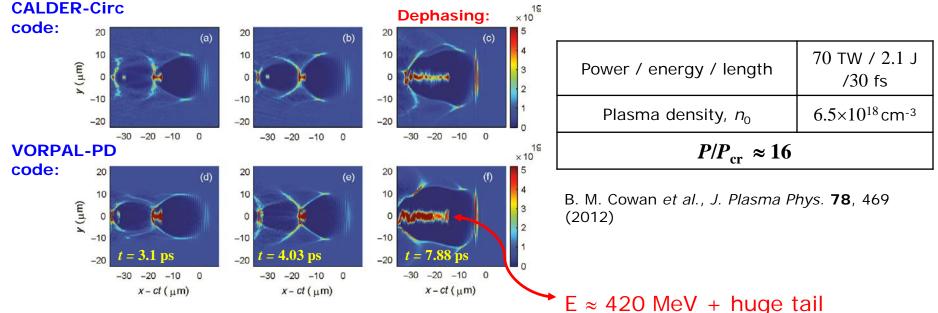
Repetition rate in kHz to raise the dosage – major challenge

MW-class average-power laser amplifiers are not going to be available soon

Raising the repetition rate: GeV LPA with sub-Joule (10-TW-scale) pulses

Moderate average power:

1. Enables *high repetition rate* needed by applications that require high dosage (medicine, nuclear fluorescence studies *etc*.)

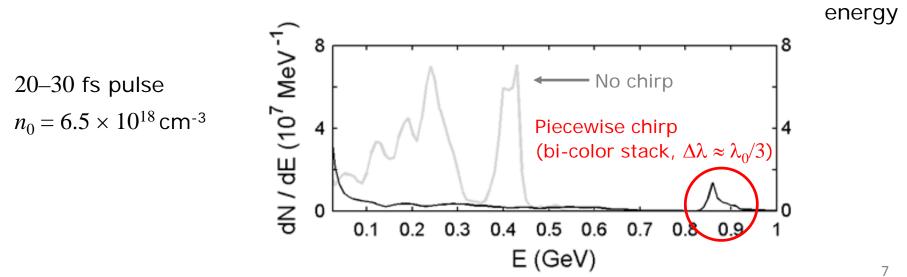

1J @1 kHz = 1 kW - a hard, yet manageable laser engineering problem.

- 2. Helps reduce the size and cost of facilities.
- 3. Lifts the barriers for first-principle modeling.
- 4. Enables *real-time control* of the laser pulse phase (using genetic algorithms) for optimization of the acceleration process

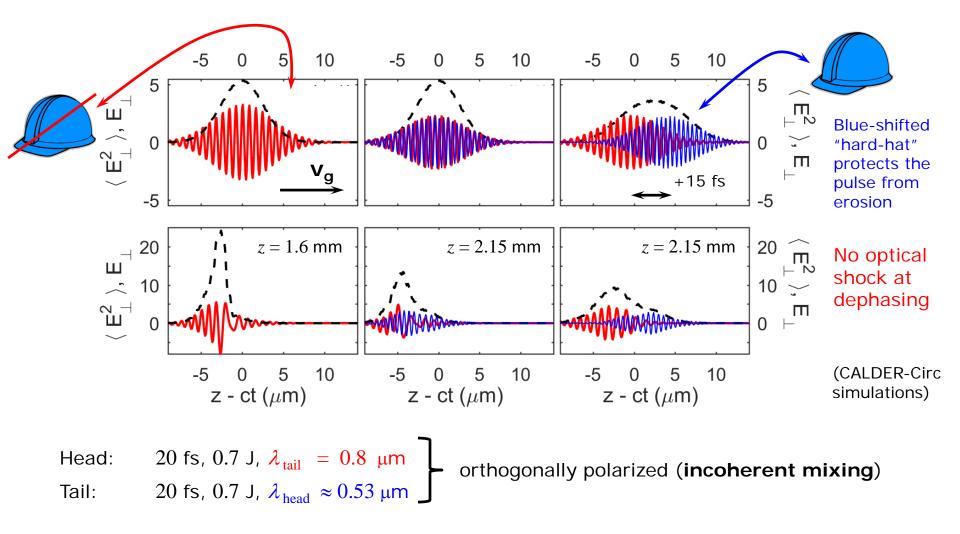
[Z.-H. He et al., Coherent control of plasma dynamics, Nat. Comm. 6, 7156 (2015)]

Transform-limited, 10-TW-class pulse rapidly destroys itself and e-beam ®

- 1. Self-guiding needs a dense, highly dispersive plasma ($\sim 10^{19}$ cm⁻³)
- 2. Self-compression of the pulse
 - (a) keeps the energy gain below half-GeV
 - (b) forces expansion of the bubble, hence massive dark current

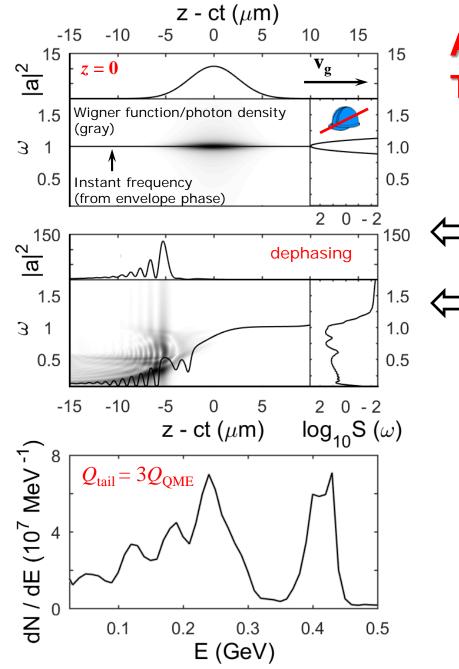


Large bandwidth ($\Delta \lambda \sim \lambda_0$) and negative chirp solve the problem \bigcirc


These features:

- mitigate the frequency red-shift
- > slow down pulse self-compression in dense plasmas (~ 10^{19} cm⁻³)
- extend the dephasing length, <u>boosting the energy gain to GeV level</u>
- strongly reduce the energy tail.

HIGH EXPECTATIONS: Background-"free" near-GeV acceleration with 1.4J laser


Temporally advanced blue-shifted "head" protects the optical driver from nonlinear erosion

Frequency shift in Raman cells with subsequent conventional CPA

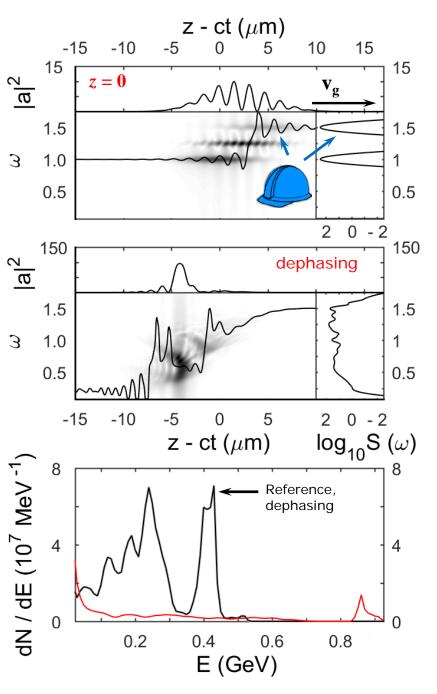
[F. B. Grigsby et al., JOSA B 25, 346 (2008)]

• Energy-efficient methods of 2nd harmonic pulse generation.

Simulation codes: WAKE and CALDER-Circ (energy spectra)

Acceleration with a single TLP: Electron beam ruined

Pulse at dephasing:


Compressed to a single cycle and 60%-depleted

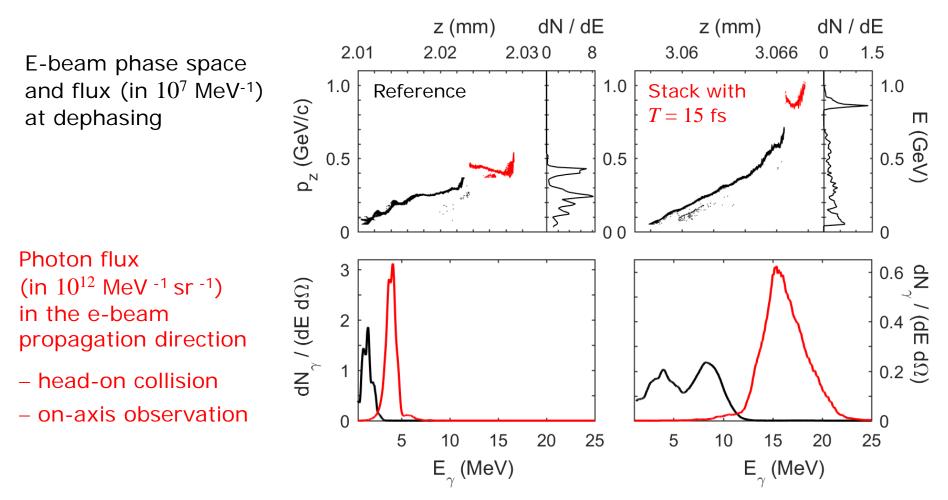
"Photon phase-space rotation": mid-IR photons slide into the bubble

QME bunch:

$\langle E \rangle$	427 MeV
$\sigma_E/\langle E angle$	6%
${\cal E}_{\rm norm, \perp}$	0.7 mm mrad
Charge	0.495 nC
RMS current	90 kA
RMS divergence	2.9 mrad
5-D brightness:	

 $2 \langle I \rangle (\pi \varepsilon_{\rm norm,\, \perp})^{-2} = 3.8 \times 10^{16} \mbox{ A/m}^{2-9}$

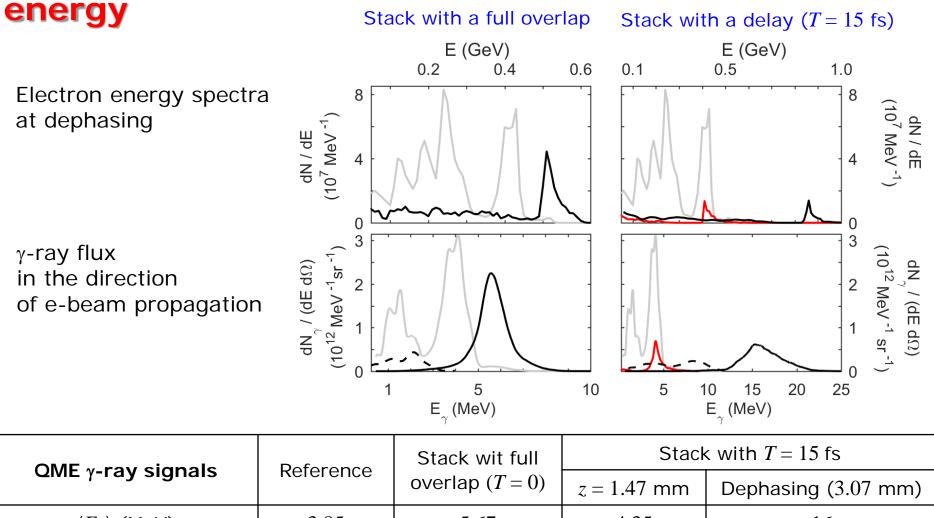
S. Y. Kalmykov et al., Phys. Plasmas 22, 056701 (2015)


Bi-color stack: Doubling electron energy

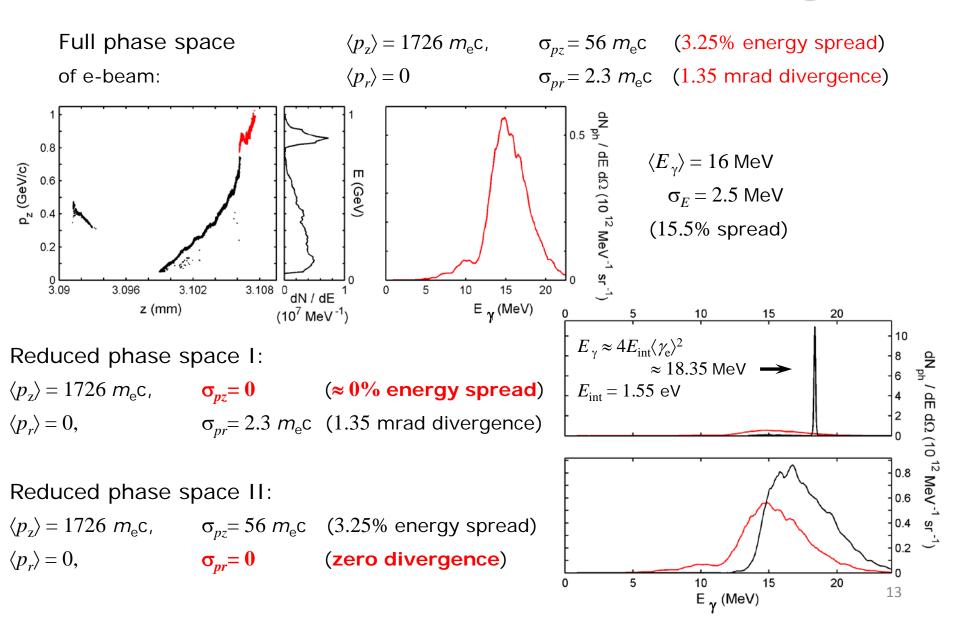
<u>OME e-beam at dephasing ($L_{dephasing} \times 1.8$)</u> :				
$\langle E \rangle$	882 MeV (×2 of reference)			
$\sigma_E/\langle E angle$	3.2%			
${\cal E}_{\rm norm, \perp}$	0.4 mm mrad (×1/2 of reference)			
Charge	73 nC			
RMS current	88 kA (same as reference)			
RMS divergence	1.35 mrad			
5-D brightness	$1.1 imes 10^{17} \text{ A/m}^2$			
	(×3 of reference)			

Tail at dephasing:

Reduction by a factor 6 in charge, by a factor 20 in average flux


Improvement in Thomson scattering signal

- Photon energy boost by a factor 4.2 (to 16 MeV)
- Increase in the signal to background ratio, from 2:1 to 4:1


Thomson back-scattering (almost linear regime, quasi-planar-wave interaction): Interaction laser pulse: Linearly polarized, $r_0 = 16.8 \ \mu\text{m}$; $a_0 = 0.1$; $\lambda = 0.8 \ \mu\text{m}$; FWHM 250 fs

Time delay in the stack controls γ -photon flux and

		OVEIIap(I=0)	z = 1.47 mm	Dephasing (3.07 mm)
$\langle E_{\gamma} angle$ (MeV)	3.85	5.67	4.35	16
$\sigma_E / \langle E_\gamma \rangle$, %	18.7	17.1	21.3	15.5
N_{γ} per $\Omega_{ m d}$	8.95×10^{6}	$5.08 imes 10^6$	1.52×10^{6}	1.58×10^{6}
Energy (µJ)/power in Ω_d	5.5 (1 GW)	4.6 (1.2 GW)	1.1 (1.3 GW)	4 (4.7 GW)

Few-% energy spread of e-beam imparts 15–20% bandwidth into the Thomson signal

Electrons from stack-driven LPA for quasi-monochromatic Thomson sources

- > High-power (1–5 GW), fs-length γ -ray pulses contain > 10⁶ photons in the sub-µsr observation solid angle
- This flux corresponds to the full bandwidth (1–2.5 MeV) imparted by a few-% energy spread in the e-beam
- > Mean photon energy is tunable between 4 and 16 MeV without losing photons in the µsr observation solid angle $\Omega_d = (\pi/2)\langle \gamma_e \rangle^{-2}$
- ➤ Signal to background ratio is better than 4:1
- > Changing time delay in the stack permits accurate tuning e/γ energy and flux, with the same laser energy and frequency ratio in the stack
- Sub-Joule energy in stack components affords kHz repetition rate at the affordable average power
- Expectation of 10¹⁰ ph/s flux (good for NRF applications).

Trains of multi-color X/γ-ray pulses: What are they good for?

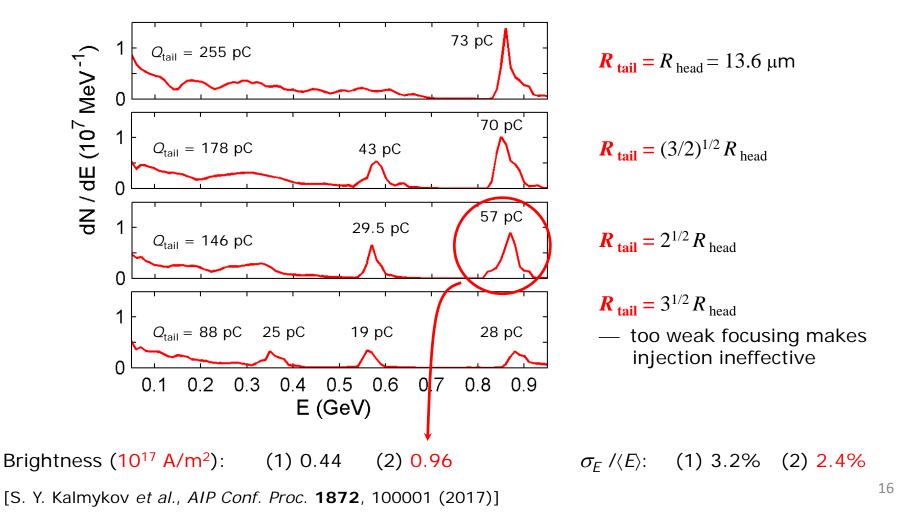
Comb-like X/γ - ray beam: Train of wave packets with an adjustable frequencies and time delays

delays 1.5 105 Bi-color e-beam from IN/dEp(keV⁻¹) SPARC-LAB: 1.0 105 (c) (3)(1)158 Images: (b) 0.5 105 (b) γ V. Petrillo et al., Dual-color X-rays from 156 Thomson or Compton sources, Proc. SPIE 9512, 95121E (2015) (a) 140 150 E_p(keV) 154 -1 A bi-color X-ray beam @ SPARC-LAB t(ps) Generation mechanism: bi-color FEL or inverse

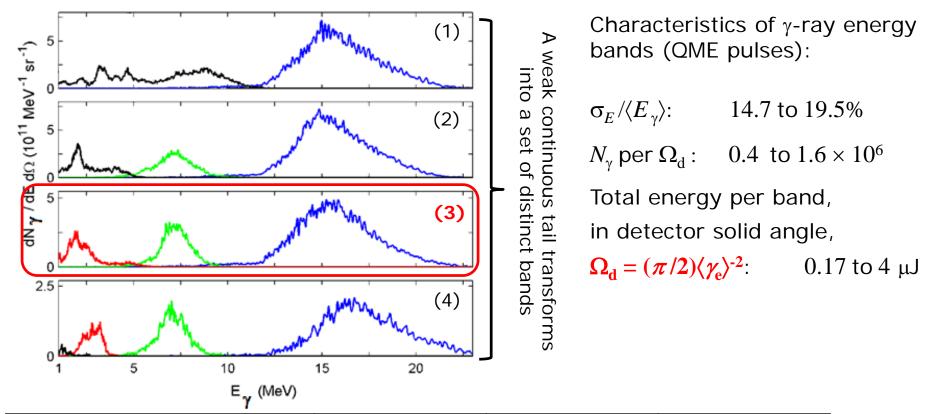
Generation mechanism: bi-color FEL or inverse Compton (Thomson) scattering

Source: a comb-like e-beam – a train of

bunches with adjustable energies and time

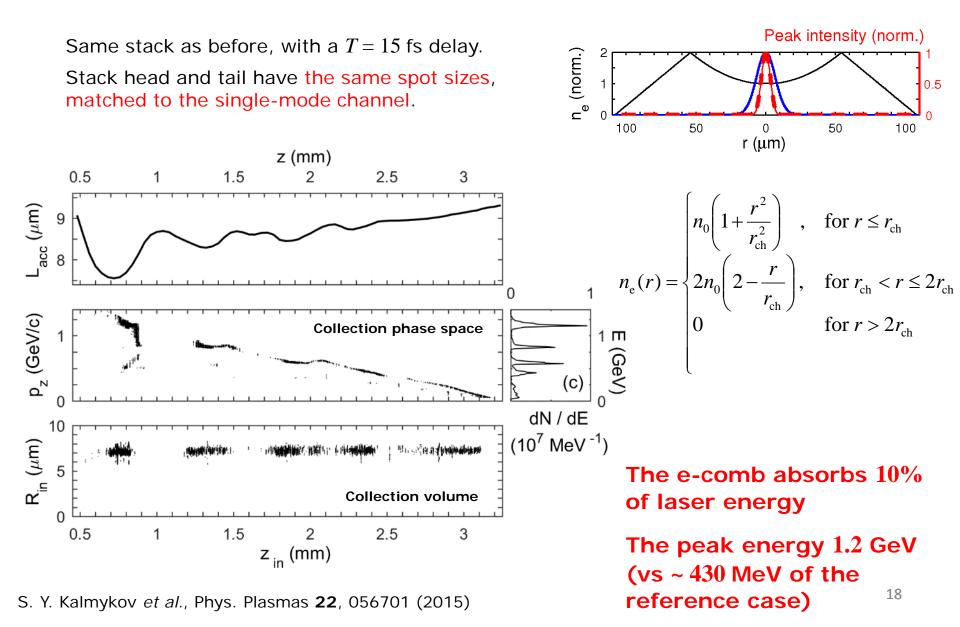

Applications:

- Ultrafast (on a fs- to ps-scale) pump-probe experiments in AMO or HEDP
- Time-domain spectroscopy [J. F. Cahoon et al., Science 319, 1820 (2008)]
- Screening/diagnostic mammography: Color components help discriminate chemical composition of absorbing tissues [I. Willekens et al., Eur. Soc. Radiography, 2011]
- Nuclear photonics [S. Chen et al., Phys. Rev. Lett. 110, 155003 (2013)]

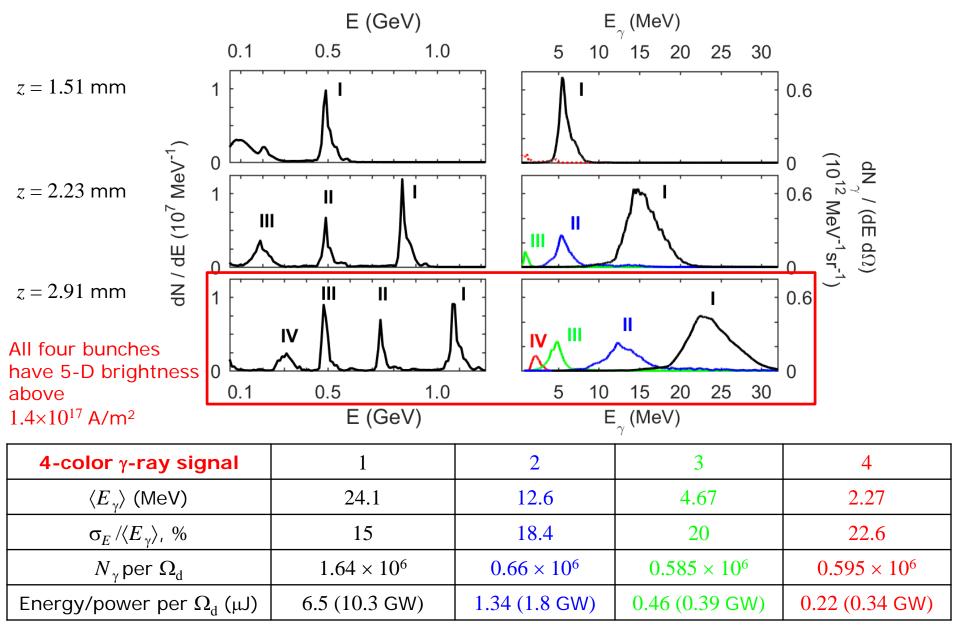

Generating comb-like e-beams in stack-driven LPA

Stack (with T = 15 fs) permits focusing head and tail differently.

Weak focusing of the tail $(R_{tail} \ge R_{head})$ destabilizes the bubble. Periodic injection generates a polychromatic train of bunches.



Generating X/γ-ray pulse trains using comb-like ebeams from stack-driven LPA



Case 3	1	2	3
$\langle E_{\gamma} angle$ (MeV)	2.8	7.25	15.8
$\sigma_{E}/\langle E_{\gamma} angle$, %	19.4	14.7	15.7
$N_{ m \gamma}{ m per}\Omega_{ m d}$	0.91×10^{6}	0.62×10^{6}	$1.25 imes 10^6$
Energy/power per $\Omega_{ m d}$ (µJ)	0.4 (0.17 GW)	0.72 (0.75 GW)	3.16 (4.27 GW)

Propagating the stack in a channel (a) adds more control, (b) further boosts electron energy

Progress of comb-like e-beam through dephasing and generation of multi-color γ-ray beams

Summary

Designing the LPA drive pulse as an incoherent stack of independent sub-Joule, transform-limited pulses with a large difference frequency ($\Delta \omega \sim \omega_0$) permits an *unprecedented freedom in e-beam phase space control*, suppressing the background and increasing 5-D brightness of individual bunches above ~10¹⁷ A/m².

Stack-driven LPAs promise generation of fs-length, ultra-bright, near-GeV electron bunches at a kHz repetition rate, with affordable average power.

These bunches (or trains of bunches) promise to drive quasi-monochromatic (or comb-like) Thomson-scattering γ -ray sources, tunable into 10's of MeVs, while keeping the γ -ray pulse length extremely short (100's of as) and the number of photons high (> 10⁶).

ACKNOWLEDGEMENTS

Inverse Thomson scattering simulations were completed by S.Y.K. utilizing the Holland Computing Center of the University of Nebraska.

SYK cordially thanks Natasha Pavlovikj of HCC for assistance.

Addenda

Simulation tools: fully relativistic PIC codes & particle tracker for radiation calculation

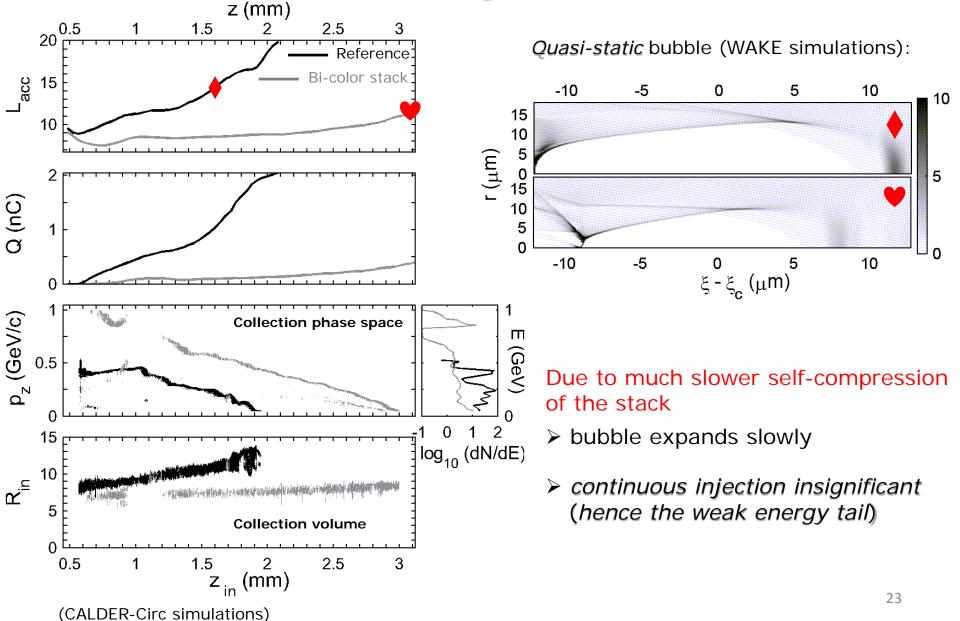
Exploring optical pulse evolution in the plasma and beam loading effects: WAKE (extended-paraxial, ponderomotive guiding center, quasi-static)

[P. Mora and T. M. Antonsen, Jr., Phys. Plasmas 4, 217 (1997)]

 Accurate simulation of self-injection and acceleration: CALDER-Circ (quasi-cylindrical, fully explicit; poloidal mode decomposition of fields and currents)
 [A. F. Lifschitz *et al.*, *J. Comp. Phys.* 228, 1803 (2009)]

Also: numerical Cherenkov-free EM solver; 2nd or 3rd order macro-particles

[R. Lehe, A. F. Lifschitz et al., PR-STAB Beams 16, 021301 (2013)]


Inverse Thomson scattering code

[I. Ghebregziabher et al., Phys. Rev. Accel. Beams 16, 030705 (2013)]

fully relativistic particle tracker; laser beam is paraxial; radiation calculation using classical formula

$$\frac{d^2 I}{d\omega d\Omega} = 2|\mathbf{A}(\omega)|^2, \qquad \mathbf{A}(\omega) = \left(\frac{e^2}{8\pi^2 c}\right)^{1/2} \int_{-\infty}^{\infty} e^{i\omega t} \left[\frac{\mathbf{n} \times \left[(\mathbf{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}\right]}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^3}\right] dt, \qquad \frac{d^2 I_e}{d\omega d\Omega} = \frac{1}{N_s} \sum_{i=1}^{N_s} \frac{d^2 I_i}{d\omega d\Omega}.$$

Stack vs. reference: Suppressing continuous injection

