Optimisation of the laser-plasma injector via space charge effects using ionisation-induced injection

¹<u>P. Lee</u>, ¹G. Maynard, ¹T. L. Audet, ²R. Lehe, ²J.-L. Vay, ¹B. Cros

¹LPGP, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91405 Orsay France ²Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA EAAC, 24-30th September 2017

Physique des Ondes et de la Matière

Advantages and limitations of Laser Wakefield Accelerator

- **an injector** : a few mm long dense plasma, complex physics, highly nonlinear, intrinsically 3D
- a transport line: a few m long
- an accelerator : a few m long less dense plasma

Ionisation injection scheme for the injector

Electron beam specifications for the injector (CILEX, EuPRAXIA):

- energy range between 50-200 MeV
- narrow energy spread ($\Delta \mathcal{E}_{rms} / \langle \mathcal{E} \rangle \leq 5\%$)
- high charge ($Q \ge 10 \text{ pC}$)
- rms transverse divergence ($\theta \leq 5$ mrad)
- rms normalised emittance ($\varepsilon \leq 1$ mm.mrad)

Existing injection schemes

- self-injection scheme
- density gradient based injection scheme
- multiple lasers injection scheme
- ionisation injection scheme
- mixed techniques

T. L. Audet, WG4 Thursday, 18:00

Why ionisation injection scheme?

- generate high charge electron beam
- shot-to-shot stability
- simple experimental setup
- additional control parameter

Ionisation injection scheme: the basics

*Warp is well adapted to model laser-plasma injector

Warp : open source PIC code, co-developed at LBNL

J.-L Vay et al. Computational Science & Discovery, 2012

Quasi 3D: angular Fourier decomposition algorithm[†] $\Delta z = [\lambda_0/30, \lambda_0/25], \Delta r = \lambda_0/6, \text{ # macroparticles/cell/species = 36,}$ Fourier modes = [-1,0,+1]

Ionisation processes: Ionisation module using the ADK model

Trajectory analysis: particle tracking module

*J.-L Vay et al. Computational Science & Discovery, 2012 †A. F. Lifschitz et al. JCP, 2009

Plasma target : ELISA⁺

- ELISA longitudinal density profile well characterised experimentally and by fluid dynamics simulations
- L_{cell}= 1.0 mm
- $Ø_{aperture} = 600 \, \mu m$
- d_{plate} (entry and exit) = 500 μ m

*T.-L. Audet et al. NIM-A, 2016

Varying nitrogen concentration to control space charge effects

*Choice of parameters:

- nitrogen concentration, C_{N_2} = [0, 0.35, 0.5, 1.0, 2.0]%
- maximum electron number density, $max(n_{e0}) = 4.\times 10^{18} \text{ cm}^{-3}$
- laser parameters: 100 TW, 20 fs FWHM, $w_L = 16 \ \mu m$
- moderate Gaussian power laser pulse, initial potential vector, $a_0 = 1.6$

evolution of a₀ independent of C_{N₂}
→generated plasma wave similar in all cases
→study narrows down to only

space-charge effects

Space charge effects are responsible for the energy distribution of the accelerated electrons

- formation of 2 peaks for $C_{N_2} \ge 1\%$
- induced space charge field flattens the accelerating field
- low energy electrons at the back of the bunch never catch up with the high energy electrons

Space charge effects correlate with the degree of phase space rotation of accelerated electrons

 correlation between average energy and position

- the decrease of C_{N₂} increases the phase space rotation → reduce the energy spread
- if C_{N₂}≤0.35%, the degree of phase space rotation becomes large → degrade the energy spread

Electron beam energy can be tuned while preserving other beam properties

Results summary

C_{N_2}	$\begin{vmatrix} Q \\ (pC) \end{vmatrix}$	$\left \begin{array}{c} \langle \mathcal{E} \rangle \\ (\mathrm{MeV}) \end{array} \right $	$\left \begin{array}{c} \Delta \mathcal{E}_{rms} / \left\langle \mathcal{E} \right\rangle \\ (\%) \end{array} \right $	θ_x (mrad)	$\left \begin{array}{c} \theta_y \\ (\mathrm{mrad}) \end{array}\right $	$\left \begin{array}{c} \varepsilon_{x,n} \\ (\text{mm mrad}) \end{array}\right $	$\varepsilon_{y,n}$ (mm mrad)	
0.35	27	142	3.8	2.1	2.9	0.8	1.8) optimal
0.5	37	135 113	5.0 14.7	2.8	3.1	1.1	1.9 2.2	J values
$\frac{1.0}{2.0}$	107	93	29.1	4.6	5.6	2.5	3.8	

Extending cell length to yield a higher energy electron bunch

- For $C_{N_2}=0.35\%$, $L_{cell}=1 \text{ mm} \rightarrow 1.3 \text{ mm}$
 - • $\langle \mathcal{E} \rangle = 142 \rightarrow 196 \text{ MeV},$
 - $\Delta \mathcal{E}_{rms} / \langle \mathcal{E} \rangle = 3.8 \rightarrow 3.2\%$,
 - Q remains at 27 pC,
 - $\theta_x = 2.1 \rightarrow 2.2 \text{ mrad},$
 - $\theta_y = 2.9 \rightarrow 3.1 \text{ mrad},$
 - $\varepsilon_{x,n} = 0.8 \rightarrow 1.3 \text{ mm.mrad},$
 - $\varepsilon_{y,n} = 1.8 \rightarrow 2.3 \text{ mm.mrad}$

Conclusion and perspective

- Space charge effects have demonstrated to be beneficial in the generation of a high quality electron bunch for an injector
- the present laser plasma configuration with C_{N2}=0.35% has proven to be robust for the tuning of electron bunch energy while preserving other properties
- In perspective, simulations with realistic laser spatial-temporal profile measurements

Thank you