3rd European Advanced Accelerator Concepts Workshop

Lattice Design and Start-to-end Simulations for the ARES Linac

Jun Zhu

Sepmber 27, 2017

Outline

- Overview
- The ARES linac and its working points
- Benefit of energy upgradation

The ARES linac - applications

- Monday WG3 parallel U. Dorda, Status and Objectives of the Dedicated Accelerator R&D Facility "SINBAD" at DESY
- Monday WG5 parallel D. Marx, New Measurement Techniques Using a Novel X-band Transverse Deflecting Structure with Variable Polarization
- □ Monday Poster A. Pousa, Limitation On Slice Energy Spread in a Plasma Accelerator
- Wednesday Poster E. Svyten, Beam Quality Preservation in a Laser-Plasma Accelerator with External Injection in the Context of EuPRAXIA
- Monday Poster F. Mayet, Simulations and Plans for Possible DLA experiments at SINBAD
- □ Monday Poster W. Kuropka, Full PIC Simulation of First ACHIP Experiment @ SINBAD

Jun Zhu | EAAC3 | September 24-30, 2017 | Page 3

The ARES linac - Layout

🖵 Linac

ASTRA

Timing / position / pointing stabilities

ASTRA + ELEGANT

Matching / bunch compression / final focus

IMPACT-T (cross-checked by CSRTrack)

Collimation

Shower

🖵 Dogleg

ELEGANT

The ARES linac – generation of sub-fs bunches

Initial bunch charge (pC)	10	20	50	100	200
Final bunch charge (pC)	0.4	0.7	1.6	2.7	4.8
Initial bunch length (ps)	2.0	2.1	2.2	2.5	2.8

Beam parameters at the chicane exit

J. Zhu, et al., Phys. Rev. Accel. Beams 19, 054401 (2016)

The ARES linac – Ideal slit vs. real slit

Beam parameters at the plasma entrance

MC: pure magnetic compression, VB: pure velocity bunching, HB: hybrid compression

	WP1	WP2	WP3	WP4
Q (pC)	0.8	5.7	30	17.3
σ_{t} (fs)	0.5	2.0	29.6	12.2
l (kA)	0.6	1.1	1.6	1.5
$\epsilon_{x, \text{ slice}}/\epsilon_{y, \text{ slice}}$ (µm)	0.11 / 0.11	0.38 / 0.33	0.64 / 0.64	0.28 / 0.38
β _x / β _y (mm)	1.8 / 3.1	5.2 / 1.5	١	4.5 / 0.9
Compression method	MC	MC	VB	HB

25 β, Profile 20 β_x, β_y (m) 15 $\beta_{\rm x} = 1 \, \rm{mm}$ 10 $\beta_y = 1 \text{ mm}$ $\alpha_x = 0$ 5 $\alpha_v = 0$ 0 0 2 6 8 10 12 s (m)

Challenges at ARES:

- 1. Matching section between chicane and plasma is not feasible due to space-charge effects
- 2. The Twiss parameters at the chicane exit have a small range

Linac exit (without final focus)

The ARES linac – LPSs at the plasma entrance

The ARES linac – timing stability

J. Zhu, et al., Phys. Rev. Accel. Beams 19, 054401 (2016)

Chromatic aberration during matching (in)

Matching condition for a hard edge plasma	$eta_x = eta_y pprox rac{1}{\sqrt{K_r}}$, $lpha_x = lpha_y pprox 0$						Final beta function:	$\beta_{x_f} = \frac{f^2}{\beta} + \sigma_\delta^2 \beta_{x_i}$		
With ANGUS laser	Linear regime			Blow-out regime				Px_i		
Plasma density (cm ⁻³)	10 ¹⁶	10 ¹⁷	10 ¹⁸	10 ¹⁶	10 ¹⁷	1018	Fmittance growth	$\frac{\Delta \varepsilon_x}{\Delta \varepsilon_x} \approx \frac{\sigma_\delta^2 \beta_{x_i}^2}{\sigma_\delta^2 \beta_{x_i}^2}.$		
Matched beta function (mm)	0.80	0.47	0.39	1.04	0.33	0.10		$\varepsilon_x = 2f^2$		

Final focus triplet: 2-cm-long, 250 T/m, 500 T/m, 500 T/m PMQ

Incoming beta function ranges from 6 ~ 22 m

J. Zhu, et al., THPVA007, Proceedings of IPAC2017

The ARES linac – LWFA driven FEL

FEL parameters are calculated using Ming Xie's formula

 $\gamma = 430$ was chosen in light of the planned BELLA experiment J. van Tilborg, AIP Conference Proceedings 1812, 020002 (2017)

WP2 (slightly decompressed)

WP4

Assume the relative energy spread can be preserved!

<i>Q</i> (pC)	I _{beam} (kA)	σ_t (fs)	ε _{x,slice} (μm)	$ar{eta}_x$ (m)	$\sigma_{\delta,slice}$ (%)	γ	λ_u * (cm)	<i>K</i> ₀ *	λ_r (nm)	$ ho_P$	<i>L_G</i> (m)	<i>L_c</i> (μm)
				0.7	0.18	430	1.5	1.00	60.8	0.0053	0.262	1.06
5.7	0.41	3.3	0.38	2.7	0.18	1663	1.5	1.00	4.1	0.0014	4.87	1.32

* A. Maier, Matter and Technologies Kickoff Meeting, DESY Hamburg (2015)

$\bar{\beta}_x$ Q $\sigma_{\delta,slice}$ λ_{μ} λ_r L_G L_c Ibeam σ_t $\mathcal{E}_{x,slice}$ (kA) (%) (pC) (fs) (μm) (m) γ (cm) K_0 (nm) (m) (µm) ρ_P 0.7 0.16 430 1.5 1.00 60.8 0.114 0.0090 0.46 17.3 1.5 12.2 0.28 2.7 0.16 1663 1.5 1.00 4.1 0.0023 0.718 0.20

Jun Zhu | EAAC3 | September 24-30, 2017 | Page 12

Dogleg beamline with tunable R₅₆

Geometrical constraints inside the SINBAD tunnel Horizontal displacement: 5.8 m, Length: ~10 m, Bending angle: 20 deg

Energy upgradation

We like the EuPRAXIA's working point: 3 kA, 30 pC!

Summary

- The start-to-end simulations have shown different working points (0.8 ~ 30 pC, 0.5 ~ 30 fs rms) at the ARES linac, aiming typically for LWFA and LWFA-driven FEL.
- The peak current is limited to around 1.5 kA due to the spacecharge effects. The space-charge effects also make the matching (in) very challenging. Energy upgradation is highly desirable.

Jun Zhu | EAAC3 | September 24-30, 2017 | Page 15