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Multi-Pulse Laser Wakefield Acceleration 
                        MP-LWFA 
► Fibre and thin-disk lasers for MP-LWFA
● kHz rate
● high efficiency
● excellent spatial quality and pointing
● lower peak power on optics 
● lower intensty for ionization injection
● compact
● fast feed back diagnostics

Introduction

► No self-guiding beacuse of lower peak power  
                                                                   ► A plasma channel/dielectric capillary needed
● choosing suitable plasma channel
● propagation over dephasing distance to get ~ GeV level accelerator--> 25 cm; EPOCH 2D
● pump laser frequency shifts lead to the accelerator length shorter than the dephasing 
length for energies large enough
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► realted presentations:

● S. Hooker; WG1 on Monday and Plenary on Tuesday.
● M. Streeter; WG7 on Monday.
● C. Arran; poster session on Wednesday.
● M. Shalloo; WG5 on Tuesday.
● P. Tomassini; Plenary on Thursday.
● J. Holloway; WG1 on Thursday.

Related presentations
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Plasma channel of power α
For α = 2
the potential of the wake doesn’t 
grow linearly and transverse pro-
files of the wake become narrow. The 
wake behind the laser train decays 
quickly
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Linear theory; following N.E. Andreev et al. Phys. Plasmas 4, 1145 (1997)

α = 2
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For α = 10 (plots below) the potential of the wake grows linearly. Transverse profiles of the 
wake become narrow but acceptable. The wake behind the laser train doesn’t decay quickly. 

For α = 6 and larger, the channel works for long trains of laser pulses (here 120).
The matched spot size WM doesn’t depend on α (excellent approximation).

α = 10

Plasma channel of power α
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► A train of 10 identical laser pulses
Each pulse:
● λ0 = 1 μm,    ω0 = 1.9x1015 Hz,  k0 = 6.3x106 m-1 
● 80 mJ,     FWHM 100 fs,     w0 = 40 μm,    Gaussian envelope 
● a0 = 0.148 
● plasma density on axis = 1.75x1017 cm-3 ,   
    λp = 80 μm,    ωp = 2.4x1013 Hz,  kp = 7.8x104 m-1 
    kp w0 = π
● plasma channel α = 10 
● plasma channel length = 25 cm = dephasing length

Parameters

► PIC code EPOCH 2D v4.8.0 on ARCHER
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Ey transverse electric field in V/m
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Ey

after 25 cm propagation
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Ey transverse electric field in V/m

pulse number 1

pulse number 9pulse number 10
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Ex longitudinal electric field in V/m

after 25 cm propagation

x [m]

after 2 mm propagation

x [m]
y [m]y [m]



Roman Walczak 
University  of Oxford 

EAAC 2017, Isola d’Elba, 24 - 30 Sep 2017

Ex
Ex longitudinal electric field in V/m

after 2 mm propagation after 25 cm propagation

x [m]

y [m]
x10-4

x [m]

y [m]
x10-4



Roman Walczak 
University  of Oxford 

EAAC 2017, Isola d’Elba, 24 - 30 Sep 2017

Ex longitudinal electric field on axis in V/m
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after 2 mm propagation after 25 cm propagation
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E(k) fast Fourier transform of the electric field
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Ey(k) fast Fourier transform of the electric field
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8 µ pump laser

► A single laser puls with the energy of 500 mJ @ λ0 = 8 μm, a0 = 3.
● dephasing length = 5.3 mm
► Other parameters as before.

► To note: 
●  the same wake as before would be created by a single pulse 
with 12.5 mJ @ 8 μm; a0 = 0.467. The dephasing length would be 3.9 mm.
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Ey; 8 µ pump laser



Roman Walczak 
University  of Oxford 

EAAC 2017, Isola d’Elba, 24 - 30 Sep 2017

Ex; 8 µ pump laser
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Ex on axis; 8 µ pump laser



Roman Walczak 
University  of Oxford 

EAAC 2017, Isola d’Elba, 24 - 30 Sep 2017

► Plasma channels ~r α  for α = 6 or larger are suitable for propagation of long trains of 
laser pulses. Matching spot size doesn’t depend on α.

● A train of 10 laser pulses with total energy of 800 mJ @ 1 µ was propagated over 25 
cm in a plasma channel with α = 10 and the density on axis = 1.75x1017 cm-3 demon-
strating that MP-LWFA accelerating electrons to GeV energies at low density is possible. 
● At this density, emerging fibre and thin disk laser technologies can be considered for 
MP-LWFA. 
● Pump depletion is small and agrees with linear theory expectation.
● Red and blue frequency shifts are significant and eventually limit accelerator en-
ergy and amount of usable pump laser energy.  This has been demonstrated at the 
pump wavelength increased to 8  µ. At a0 = 3, possible accelerator length is about fac-
tor 2 shorter than the dephasing length. The self-injection might also play a role (to be 
checked how big). The pump depletion might contribute as well at some level; the deple-
tion length is about twice as long as the dephasing length

► Frequency shifts and GDD, particularly important for large wavelength pump laser, 
need to be carefully considered and taken into account designing accelerators.

Summary


