EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Simulations and Performance

Alban Mosnier (CEA) EAAC 2017, Sept. 19th

 $\langle \bigcirc \rangle$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

EUPRAXIA Electron beam requirements

• Among the various applications considered in EuPRAXIA, the hardest e-beam requirements likely come from FEL

Quantity	Symbol	Baseline value
Particle type	e	Electrons
Energy	Е	5 GeV
Charge	Q	30 pC
Bunch length (FWHM)	τ	10 fs
Peak current	Ι	3 kA
Repetition rate	f	10 Hz
Number of bunches	N	1
Total energy spread (RMS)	σ_{E}/E	1%
Slice energy spread (RMS)	$\sigma_{E,S}/E$	0.1 %
Trans. Norm. emittance	$\epsilon_{N,x}, \epsilon_{N,y}$	1 mm mrad
Alpha function	α_x, α_y	0
Beta function	β_x, β_y	5 m

Target values for the 5 GeV electron beam parameters at the entrance of the undulators (IPAC EuPRAXIA paper) Table also valid for the 1 GeV e-beam, though 1.5 kA peak current with smaller $\varepsilon \& \sigma_E$ is also considered

$$\frac{\overline{\sigma_{\gamma}}}{\gamma} << \rho \qquad \frac{\varepsilon_n}{\gamma} \approx \frac{\lambda}{2\pi}$$

- ✓ high peak current
- ✓ very low emittance
- ✓ very small energy spread

EAAC 2017, Sept. 28th - Simulations and Performance

EUPRAXIA Numerical simulation tools

- Electron acceleration in plasma cannot be fully predicted by analytic theory owing to nonlinear effects of laser pulse evolution, wakefield evolution and motion of the accelerated beam
- Particle-In-Cell (PIC) codes widely used tool for the investigation of both laser- and beam-driven plasma acceleration

- Inluding sophisticated techniques, as: Moving window (mandatory for long propagation lengths) Parallelization (mandatory for 2D-3D simulations) Flexible and quick output analysis, Ionisation (Field Ionisation / Collision Ionisation) etc
- With all variants to speed up simulations: Lorentz boosted frame, azimuthal Fourier decomposition, hybrid kinetic-fluid codes, etc
- And dispersion-free algorithms to mitigate numerical Cherenkov instability : FDTD (finite-difference time domain, as Yee scheme) vs PSATD (pseudo-spectral analytical time domain) algorithms

Simulation codes

Simulation codes used in EuPRAXIA-WP2 for laser-driven plasma acceleration, as well in WP9 and WP14 for beam-driven plasma acceleration

PIC code used	Users	additional features
OSIRIS	IST, DESY	Boosted frame technique, quasi-3D cylindrical field harmonics, PGC* algorithm in 3D (laser envelope)
WARP	CNRS/LPGP, CEA	Boosted frame technique, quasi-3D cylindrical field harmonics, adaptive mesh refinement
CALDER-Circ	LOA	Quasi-3D Cylindrical field harmonics
SMILEI	CNRS/LLR	Dynamic load balancing
ALaDyn Architect	INFN_SparcLab (PISA_ILIL)	full PIC code, bunch & bg treated with macroparticles hybrid code, bunch as PIC and bg as fluid (no QSA)
HiPACE	DESY	Full 3D PIC code, Quasi-static approximation (PWFA)
PIConGPU	DESY	designed to run on Graphical Processing Units (GPUs)

* Ponderomotive Guiding Center

EUPRAXIA Stability study with PIC codes

Typical table of errors:

misalignment, fluctuation of plasma density, injected e-beam and laser pulse

	Min. Value	Max. Value
	(ex. jitter)	(ex. slow drifts)
plasma		
density	1%	10%
alignment error (plasma axis wrt e-beam and laser)		
position [µm]	1	5
angle [µrad]	1	10
e-beam and driver synchronization		
Time shift [fs]	1	10
plasma lens		
Magnetic field	1%	10%
Injected e-beam	_	
charge	10%	20%
energy	10%	20%
emittance	10%	50%
bunch length	10%	20%
Laser (global fluctuations)		
Energy	5%	20%
beam spot radius	10%	20%
intensity	10%	20%
focal plane position [mm]	0.1	1
Pointing stability	1 µrad	1 µrad

+ laser pulse imperfections

most published simulations use perfect Gaussian profiles

Transverse profile

Super-Gaussian $I(\rho) = I_0 \exp\left[-(\rho/w)^{\alpha}\right]$

 α =2 Gaussian profile α =4-10 "top-hat" profile

with angular asymmetries

 $A_{L}(\rho,\theta) = \sum A_{m}(\rho,\theta) \exp[-im\theta]$ mode decomposition m=1,2

Time profile of the laser pulse $A_L(z,\rho,\theta,t) = A_L^0(z,\rho,\theta) \exp\left[-(\tau/\tau_L)^2 - i(\omega\tau + \varphi_L)\right]$

 ϕ_L relative phase between high-frequency laserfield and envelope

Spatio-temporal correlation $\varphi_L(\omega, p) = \varphi_L(\omega_0, p) - \delta \varphi_L$

 $\delta \phi_{\text{L}}$ phase variation of spatial-temporal correlation

can be inferred from new experimental technics enabling the measurement of such correlations G. Pariente et al, Nature Photonics 10, 547 (2016)

A. Mosnier

EUPRAXIA Gaussian/realistic laser pulses

□ Transverse intensity profile of laser pulse

- LBNL experiment capillary discharge waveguide
 - the fluence profile evolution of the laser pulse through the waveguide depends strongly on the initial profile Gaussian or top-hat (large diffraction in the middle)

W.P. Leemans et al PRL 113, 245002 (2014)

Transverse intensity distribution and wavefront distortion

A. Mosnier

EAAC 2017, Sept. 28th - Simulations and Performance

Config 1: LPA with internal injection

Config 2: LPA with external injection from RF injector

• Config 3: LPA with external injection from Laser Plasma injector

• Config 4 : BPA with external injection from RF injector

- High-energy LP injector
 - Can we inject (self-injection) and accelerate a beam with good quality (meeting user requirements) to 1, 2, ...5 GeV in a single stage ?
- Low-energy LP injector
 - What is the most promising method to achieve a 150 MeV beam with good quality to be further accelerated (meeting the FEL requirements) ?

RF injector

- Inject the beam with expected parameters from RF photo-injector high energy / low charge ?
- Plasma accelerating section
 - What are the most promising options ?
 Non-linear with self-guiding / linear regime with plasma channel

Problematic 1

Can we inject (self-injection) and accelerate a beam with sufficient good quality (meeting user requirement) to 1, 2, ...5 GeV in a single stage ?

Self-injection

EUPRAXIA High-energy LP Injector

Based on self-injection method

- 1. relativistic self-focusing of the pulse to create the ponderomotive blowout
- 2. transient bubble expansion sufficient to trigger self-injection of background electrons
- 3. rapid termination of self-injection and formation of a quasi mono-energetic bunch
- 4. acceleration to GeV energy over ${\sim}1$ cm distance, without low-energy background

> 1 GeV LPI with 0.6 PW laser power [F. Massimo, A. Beck]

Laser		
Power	600 TW (15 J)
Waist w ₀	30 µm	
a ₀	4.3	
Plasma		
Density n ₀	8.6 x 10 ¹⁷	′ cm ⁻³
Extracted bea	m	
	@0.7cm	@1.3cm
Energy	1.1 GeV	2.2 GeV
Charge	610 pC	530 pC
E spread rms	6.6 %	7.5 %
$\boldsymbol{\epsilon}_{N x,y}$ (mm.mrad)	1.5, 1.5	1.5, 1.7
A. Mosnier		EAAC

Parameters from A. Beck, NIM A 740 (2014) Simulations Calder-Circ with anti-Cherenkov stencil *R. Lehe, "Numerical growth of emittance in simulations of laser-wakefield acceleration", PRSTAB 16, 021301 (2013)*

EAAC 2017, Sept. 28th - Simulations and Performance

Problematic 2 :

What is the most promising method to achieve a 150 MeV beam with good quality to be further accelerated in a LP section (meeting the FEL requirements) ?

Based on down-ramp method

 \rightarrow slows down the plasma wave

Laser spot size scan $5 \rightarrow 10 \ \mu m$

$n_{ph} = 1.5 \times 10^{19} \text{ cm}^{-3}$ $n_{p0} = 1.0 \times 10^{19} \text{ cm}^{-3}$

➢ 236 MeV 80pC [IST, U. Sinha, J. Vieira]

Laser		
Power	8.4 TW	
Waist w ₀	$7 \ \mu m \ \sim 1.4 \ x \ matched$	spots
a ₀	2.83	
Plasma		
Density n _{p0}	1 x 10 ¹⁹ cm ⁻³	
Extracted beam @sweet spot		
Energy	236 MeV	
Charge	81.5 pC	
E spread FWHM	9.3 %	

A. Mosnier

EAAC 2017, Sept. 28th - Simulations and Performance

Based on shock injection

- Changing length & height of the downramp
- Scan parameters (for $a_0 = 2.5$)
 - $L_{downramp} = 10 50 \ \mu m$, K = 1.2, 1.3, 1.5
- > 150 MeV 30 pC [LOA, F. Massimo]

Based on shock injection

- Changing length & height of the downramp
- Scan parameters (for $a_0 = 2.5$)
 - $L_{downramp}$ = 10 50 μm , K = 1.2, 1.3, 1.5

➢ 150 MeV 30 pC [LOA, F. Massimo]

Laser		
Power	30 TW	
Waist w ₀	12 µm	
a ₀	2.5	
Plasma		
Density n ₀	3 x 10 ¹⁸ cm ⁻³	
Extracted beam @K=1.3 Ldr=30 µm		
Energy	150 MeV	
Charge	30 pC	
E spread rms	7 %	
$\boldsymbol{\epsilon}_{_{N x,y}}$ (mm.mrad)	0.8, 1.0	

A. Mosnier

EAAC 2017, Sept. 28th - Simulations and Performance

EUPRAXIA Low-energy LP Injector

Based on shock injection

- Changing also the laser energy
- Scan parameters $a_0 = 2.16, 2.5, 2.79$ $L_{downramp}$ = 10 – 50 μm , K = 1.3, 1.5, 1.7

➤ 150 MeV 30 pC [LOA, F. Massimo]

Laser		
Power	30 TW	
Waist w ₀	12 µm	
a ₀	2.5	
Plasma		
Density n ₀	3 x 10 ¹⁸ cm ⁻³	
Extracted beam @K=1.3 Ldr=30 µm		
Energy	150 MeV	
Charge	30 pC	
E spread rms	7 %	
$\boldsymbol{\epsilon}_{_{N x,y}}$ (mm.mrad)	0.8, 1.0	

A. Mosnier

EAAC 2017, Sept. 28th - Simulations and Performance

ELISA density profile

Based on ionization injection

- Ionization of inner shells of high Z atom (ex. N) at I_{peak} of laser pulse
- Features: simple target configuration, moderate laser intensity, higher injected charge, emittance lower than self-injection scheme

> LPGP parametric study [P. Lee et al]

100 TW
16 µm
1.6
$4 \times 1018 \text{ cm}^{-3}$
(descending gradient)
(descending gradient) 82.6 MeV
(descending gradient) 82.6 MeV 50 pC
(descending gradient) 82.6 MeV 50 pC 11 %

Changing density profile with cst N_2 fraction (1%)

Density profile	E _{peak} (MeV)	∆ E/E (%)
ELISA	65.7	13.1
Descending gradient	82.6	11.0
Plateau	90.8	12.0

 $n_e/\max(n_{e0})$ (arb.units) $^{90}_{80}$

0.2

Laser

Bunch charge ~ 40-50 pC Larger emittance in the laser polarisation plane $\varepsilon_{x,y} = 0.33$, 2.1 µm

Low-energy LP Injector

Based on ionization injection

- Ionization of inner shells of high Z atom (ex. N) at I_{peak} of laser pulse
- Features: simple target configuration, moderate laser intensity, higher injected charge, emittance lower than self-injection scheme

> LPGP parametric study [P. Lee et al]

Laser	
Power	100 TW
Waist w ₀	16 µm
Initial a ₀	1.6
Plasma	
Density n ₀ max	4 x 10 ¹⁸ cm ⁻³
Extracted bean	ו L _{cell} 1mm, 0.35% N ₂
Energy	142 MeV
Charge	27 pC
E spread rms	3.8 %
ε _{N x,y}	0.8, 1.8 mm.mrad

0.35% N₂ and longer cell (1 \rightarrow 1.3 mm)

Energy	196 MeV
Charge	27 pC
E spread rms	3.2 %
εΝχγ	1.3, 2.3 mm.mrad

Patrick Lee - WG6 Tuesday afternoon

Changing N₂ fraction (ELISA profile)

100

E (MeV)

150

50

28th - Simulations and Performance

200

EUPRAXIA Multi-pulse ionization injection

Combination of multi-pulse resonant wakefield and ionization injection

- A resonant multi-pulse drives a large-amplitude plasma wave
- The wave traps electrons extracted by further ionization
- > INO-CNR study [P. Tomassini et al]

Drive Laser (X 8	puises)
a ₀	0.64
Waist w ₀	45 µm
Pulse length	30 fs
Ionization Lase	r (2 nd harmonic)
a ₀	0.41
Waist w0	3.5 µm
Plasma	
Density n ₀	5 x 10 ¹⁷ cm ⁻³
Length	6.5 mm
Extracted beam	
Energy	265 MeV
Charge	3.8 pC
E spread rms	0.65 %
ε _{N x,y} (mm.mrad)	0.08, 0.02

- Main Features:
- ✓ Ultra-low emittance
- ✓ Low energy spread
- Energy can be extended (laser guiding)

Beam injected from RF photo-injector (RFI)

- Inject the beam with expected parameters from RF photo-injector but at low charge ?
 - + E_b ~ 100 MeV, $\sigma_z \leq$ 1 fs, ϵ_n < 1 μm but $Q_b \sim$ 1 pC
- Inject the beam with expected parameters from RF photo-injector but at high energy ?
 - Q_b ~ few 10's pC, σ_z ~ 10-30 fs, ϵ_n < 1 μm but E_b ~ few 100's MeV

Beam injected from optical injector (LPI)

Short bunch but higher energy spread

LPAS fed by RFI

External injection low charge, sub-fs @SINBAD
 Moderate laser power, [M. Weikum et al, Desy]

Injector exit		
Energy	$\sim 100 \text{ MeV}$	
Charge	0.7 pC	
Bunch length rms	0.77 fs	
Emittance Norm	≤ 0.2 μm	
Laser parameter		
Power	~200 TW	
Waist w ₀	42.5 μm	
a ₀	1.8	
Pulse length FWHM	25 fs	
Plasma		
density n ₀	10 ¹⁷ cm ⁻³	
Length (plateau)	1.25 cm	W

- Ultrashort bunch ⇒ small energy spread but limited by the uncorrelated spread due to transverse gradient of the wakefields
- \succ Careful matching required with ~ 1 cm long density upramp
- Ionger plasma (>10cm) to achieve 1 GeV level with laser guiding but increase of emittance and Espread due to numerical dephasing

2D OSIRIS simulation (Lehe Solver with anti-Cherenkov stencil)

LPAS fed by RFI

External injection low charge, sub-fs @SINBAD
 ➢ High laser power 100 J [E. Svystun, Desy] 1 GeV

• 1 GeV from high-energy RF injector results of EuPRAXIA@SPARC_LAB studies

S-Band photo-injector ~100 MeV + X-band ~500 MeV

to generate high-quality beams: 1 bunch for LPA scheme or 1 witness bunch + 1 driving bunch for BPA scheme

Anna Giribono - WG3 Monday afternoon 28th - Simulations and Performance

Laser driven PA fed by RFI

Simulations with Qfluid [P. Tomassini and A.R. Rossi, Plas. Phys. Cont. Fus. 58, 034001 (2016)]Andrea Rossi - WG1 Tuesday afternoon28th - Simulations and Performance

Beam driven PA fed by RFI

A. Marocchino – WG6 Tuesday afternoon 28th - Simulations and Performance

A. Mosnier

EAAC 2017, Sept. 28th - Simulations and Performance

LPAS fed by LPI

Quasi-linear regime with plasma channel

Main parameters inferred from analytical expressions (checked by WARP 3D simulations + boosted frame)

➤ 1-5 GeV 30 pC [CEA, X. Li / A. Mosnier]

$n(r) = n_0 \left(1 + \frac{\Delta n}{n_0} \frac{r^2}{r_0^2} \right)$

 L_{nd} power depletion length L_{dn} dephasing length k_n plasma wavenumber

Laser	
strength a ₀	$\sqrt{2}$
spot size w ₀	45 μm
rms pulse length σ_t	64.5 fs
peak power	136 TW
energy	15.5 J
Plasma	
Density n _a	$1 5 1017 \text{ cm}^{-3}$
	1.5 10 Cm ⁻
channel depth $\Delta n / \Delta n_c$	~ 0.5
channel depth $\Delta n/\Delta n_c$ acc. length L_{acc}	~ 0.5 ~ 30 cm
channel depth $\Delta n / \Delta n_c$ acc. length L _{acc} Injected beam	~ 0.5 ~ 30 cm
channel depth $\Delta n/\Delta n_c$ acc. length L_{acc} Injected beam energy	~ 0.5 ~ 30 cm 150 MeV
channel depth $\Delta n/\Delta n_c$ acc. length L_{acc} Injected beam energy $\epsilon_{N x,y}$	~ 0.5 ~ 30 cm 150 MeV 1 mm.mrad
channel depth $\Delta n/\Delta n_c$ acc. length L_{acc} Injected beam energy $\epsilon_{N x,y}$ charge	- 0.5 ~ 30 cm 150 MeV 1 mm.mrad Low (1 pC)

n_o (10¹⁷ cm⁻³)

For a given energy gain, laser strength and norm. spot size, there is a plasma density value which minimizes the plasma channel length

Bunch size σ_{xy} 1.3 μm \rightarrow Matched beam to preserve the emittance

X. Li - Poster session Monday afternoon 28th - Simulations and Performance

LPAS fed by LPI

- Quasi-linear regime with plasma channel
 - **Correlated energy spread**: induced by wakefield curvature + beam-loading
 - beam loading compensation \rightarrow bunchlength optimisation (further reduced by bunch shaping)
 - **Slice energy spread**: induced by radial dependance of
 - accelerating field [negligible when driver (beam or laser) >> bunch size]
 - $n_{\rm b} \sim 10^{19} \, {\rm cm}^{-3} >> n_0$ longitudinal field excited by the accelerated bunch [cannot be neglected]

 $z (\mu m)$

A. Mosnier

Laser

strength a₀

spot size w_0

peak power

energy

Plasma

Energy

ε_{N x.v}

Charge

Density n₀

acc. length Lacc

Injected beam

Energy spread

Bunch size σ_{xy}

1.3 μm

rms pulse length σ_t

EAAC 2017, Sept. 28th - Simulations and Performance

 $z (\mu m)$

- Numerous simulations carried out within the EuPRAXIA framework
- Parametric studies of Laser Plasma Injector
 - high energy (self-injection), low energy (down-ramp, shock injection, ionization, multi-pulse)
- Plasma accelerator section
 - Beam injected from RF injector (high energy) and LP injector (low energy)
- Next steps
 - End-to-end simulations (started at SparcLab)
 - Error study (Introduce various fluctuations: laser imperfections, plasma density, alignment, ...)

acknowledgments

Big thanks to all members of the EuPRAXIA WP2 For the great job made during these ~ 18 months, and For providing me all material shown in this presentation

Special thanks also to Phi Nghiem who accepted to replace me from now as coordinator of WP2 with Luis and Jorge from IST

CEA			
	Alban Mosnier	WP Leader	alban.mosnier@cea.fr
	Phi Nghiem		phu-anh-phi.nghiem@cea.fr
	Xiangkun Li		xiangkun.li@cea.fr
	Marteen Boonekamp		maarten.boonekamp@cea.fr
IST (Instituto Superi	ior Técnico)		
	Luis Oliveira e Silva	WP Co-Leader	luis.silva@ist.utl.pt
	Jorge Vieira	WP Expert	jorge.vieira@ist.utl.pt
	Ricardo Fonseca		ricardo.fonseca@tecnico.ulisboa.pt
	Joao M. Dias		joao.m.dias@tecnico.ulisboa.pt
	Ujjwall Sinha		ujjwalsinha@tecnico.ulisboa.pt
	Joana Martins		jlmartins@ist.utl.pt
	Thales Silva		thales.silva@tecnico.ulisboa.pt
DESY			
	Ralph Assmann		ralph.assmann@desy.de
	Elena Svystun		elena.svystun@desy.de
	Angel Ferran Pousa		angel.ferran.pousa@desy.de
	Thomas Heinemann		thomas.heinemann@desy.de
	Alberto Martinez de la Ossa		alberto.martinez.de.la.ossa@desy.de
	Pardis Niknejadi		pardis.niknejadi@desy.de
ICL (Imperial College	London)		
	Aakash Sahai	PDRA	a.sahai@imperial.ac.uk
INFN / ENEA / Roma	a/CNR		
INFN	Massimo Ferrario		massimo.ferrario@Inf.infn.it
INFN	Alberto Marocchino		alberto.marocchino@Inf.infn.it
INFN	Andrea Rossi		andrea.rossi@mi.infn.it
Roma University	Francesco Mira		francesco.mira@uniroma1.it
ENEA	Federico Nguyen		federico.nguyen@enea.it
CNR	Paolo Tomassini		paolo.tomassini@ino.it
CNRS			
LPGP	Gilles Maynard		gilles.maynard@u-psud.fr
	Patrick Lee		patrick.lee@u-psud.fr
	Thomas Audet		thomas.audet@u-psud.fr
LOA	Francesco Massimo		francesco.massimo@ensta-paristech.fr
LLR	Arnaud Beck		beck@llr.in2p3.fr
JUS (Jiao Tong Unive	ersity Shangai)		
	Min Chen		minchen@situ.edu.cn
	Lule Yu		luleyu@sjtu.edu.cn
USTRATH (Universit	y of Strathclyde)		
	Zheng-Ming Sheng		zhengming.sheng@strath.ac.uk
	Feiyu Li		feiyu.li@strath.ac.uk
	Maria Weikum		maria.weikum@strath.ac.uk
ELI-Beamlines			
	Danila Khikhlukha	placma physicist	Dentity Whiteholds a Gali because and

EAAC 2017, Sept. 28th - Simulations and Performance

END

A. Mosnier

EAAC 2017, Sept. 28th - Simulations and Performance