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Electron beam requirements

• Among the various applications considered in EuPRAXIA, 
the hardest e-beam requirements likely come from FEL

Target values for the 5 GeV electron beam parameters
at the entrance of the undulators (IPAC EuPRAXIA paper)
Table also valid for the 1 GeV e-beam, though
1.5 kA peak current with smaller  & E is also considered

Critical parameters
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 high peak current
 very low emittance
 very small energy spread
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Numerical simulation tools

 Electron acceleration in plasma 
cannot be fully predicted by 
analytic theory owing to nonlinear 
effects of laser pulse evolution, 
wakefield evolution and motion of 
the accelerated beam

 Particle-In-Cell (PIC) codes widely 
used tool for the investigation of 
both laser- and beam-driven 
plasma acceleration

 Inluding sophisticated techniques, as: Moving window (mandatory for long 
propagation lengths) Parallelization (mandatory for 2D-3D simulations) Flexible 
and quick output analysis, Ionisation (Field Ionisation / Collision Ionisation) etc

 With all variants to speed up simulations: Lorentz boosted frame, azimuthal 
Fourier decomposition, hybrid kinetic-fluid codes, etc

 And dispersion-free algorithms to mitigate numerical Cherenkov instability : 
FDTD (finite-difference time domain, as Yee scheme) vs PSATD (pseudo-spectral 
analytical time domain) algorithms
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Simulation codes

PIC code used Users additional features

OSIRIS IST, DESY
Boosted frame technique, quasi-3D cylindrical field 
harmonics, PGC* algorithm in 3D (laser envelope)

WARP CNRS/LPGP, CEA
Boosted frame technique, quasi-3D  cylindrical field 

harmonics, adaptive mesh refinement

CALDER-Circ LOA Quasi-3D Cylindrical field harmonics

SMILEI CNRS/LLR Dynamic load balancing

ALaDyn

Architect

INFN_SparcLab 

(PISA_ILIL)

full PIC code, bunch & bg treated with macroparticles

hybrid code, bunch as PIC and bg as fluid (no QSA)

HiPACE DESY Full 3D PIC code, Quasi-static approximation (PWFA)

PIConGPU DESY designed to run on Graphical Processing Units (GPUs)

Simulation codes used in EuPRAXIA-WP2 for laser-driven plasma 

acceleration, as well in WP9 and WP14 for beam-driven plasma acceleration

* Ponderomotive Guiding Center
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Stability study with PIC codes

+ laser pulse imperfections
most published simulations use perfect 
Gaussian profiles 

Transverse profile

Super-Gaussian

=2 Gaussian profile
=4-10 "top-hat" profile

with angular asymmetries

mode decomposition m=1,2

Time profile of the laser pulse

L relative phase between high-frequency laserfield 
and envelope

Spatio-temporal correlation

L phase variation of spatial-temporal correlation

can be inferred from new experimental technics 
enabling the measurement of such correlations
G. Pariente et al, Nature Photonics 10, 547 (2016)
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 Typical table of errors:
misalignment, fluctuation of plasma
density, injected e-beam and laser pulse
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Gaussian/realistic laser pulses

 Transverse intensity profile of laser pulse
● LBNL experiment capillary discharge waveguide

− the fluence profile evolution of the laser pulse through
the waveguide depends strongly on the initial profile
Gaussian or top-hat (large diffraction in the middle)

 Transverse intensity distribution and
wavefront distortion

W.P. Leemans et al PRL 113, 245002 (2014)

Initial laser spot

Gaussian

Exp. Spot
and phase

potential vector evolution Energy spectrum of e-

3,5 mm propagation

J. Ferri et al, Nature Scientific Report, June 2016
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PA Configurations

• Config 1: LPA with internal injection

• Config 2: LPA with external injection from RF injector

• Config 3: LPA with external injection from Laser Plasma injector

• Config 4 : BPA with external injection from RF injector

LPAS LPAS
1 GeV 5 GeV

2A

RFI
160 MeV

LPAS
5 GeV

2B

RFI
160 MeV

LPAS LPAS
1 GeV 5 GeV

3A

150 MeV
LPI LPAS

5 GeV

3B

150 MeV
LPI

LPI LPAS
1 GeV 5 GeV

1A

LPI
5 GeV

1B

High-energy
LP Injector

Low-energy
LP Injector

Low-energy
RF Injector

LPAS
1 GeV

4A

RFI
500 MeV

LPAS
5 GeV

4A

500 MeV
RFI High-energy

RF Injector

Laser driven
Beam driven
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Problematics

• High-energy LP injector
– Can we inject (self-injection) and accelerate a beam with good quality

(meeting user requirements) to 1, 2, …5 GeV in a single stage ?

• Low-energy LP injector
– What is the most promising method to achieve a 150 MeV beam with 

good quality to be further accelerated (meeting the FEL requirements) ?

• RF injector
– Inject the beam with expected parameters from RF photo-injector

high energy / low charge ?

• Plasma accelerating section
– What are the most promising options ?

Non-linear with self-guiding / linear regime with plasma channel
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High-energy LP Injector

• Problematic 1
Can we inject (self-injection) and accelerate a 
beam with sufficient good quality
(meeting user requirement)
to 1, 2, …5 GeV in a single stage ?

Self-injection
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High-energy LP Injector

• Based on self-injection method
1. relativistic self-focusing of the pulse to create the ponderomotive blowout

2. transient bubble expansion sufficient to trigger self-injection of background electrons 

3. rapid termination of self-injection and formation of a quasi mono-energetic bunch

4. acceleration to GeV energy over 1 cm distance, without low-energy background

1 GeV LPI with 0.6 PW laser power [F. Massimo, A. Beck]

Laser

Power 600 TW (15 J)

Waist w0 30 μm

a0 4.3

Plasma 

Density n0 8.6 x 1017 cm-3

Extracted beam

@0.7cm @1.3cm

Energy 1.1 GeV 2.2 GeV

Charge 610 pC 530 pC

E spread rms 6.6 % 7.5 %

N x,y (mm.mrad) 1.5, 1.5 1.5, 1.7

Parameters from A. Beck, NIM A 740 (2014)
Simulations Calder-Circ with anti-Cherenkov stencil
R. Lehe, “Numerical growth of emittance in simulations of
laser-wakefield acceleration”, PRSTAB 16, 021301 (2013)

Suitable for FEL amplification ?
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Low-energy LP Injector

• Problematic 2 :
What is the most promising method to achieve a 
150 MeV beam with good quality to be further 
accelerated in a LP section
(meeting the FEL requirements) ?

Soft density
down-ramp

Shock injection
Ionization 
injection

Other methods
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Low-energy LP Injector

• Based on down-ramp method

236 MeV 80pC [IST, U. Sinha, J. Vieira]

nph = 1.5 x 1019 cm-3

np0 = 1.0 x 1019 cm-3

 slows down
the plasma wave

Laser

Power 8.4 TW

Waist w0 7 μm

a0 2.83

Plasma 

Density np0 1 x 1019 cm-3

Extracted beam @sweet spot

Energy 236 MeV

Charge 81.5 pC

E spread FWHM 9.3 %

Field almost flat with
unmatched laser spot

 1.4 x matched spotsize

33.5 m 875 m

OSIRIS Simulations
with PGC approximation

Laser spot size scan
5  10 m

Density scan
constant density slope

a0 = 2.83, w0 = 5 μm,  = 25 fs

43.3 pC
121.5 MeV
22.5%

@matched spot size
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Low-energy LP Injector

• Based on shock injection
– Changing length & height of the downramp

– Scan parameters  (for a0 = 2.5)
Ldownramp = 10 – 50 m , K = 1.2, 1.3, 1.5

150 MeV 30 pC [LOA, F. Massimo]
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Low-energy LP Injector

• Based on shock injection
– Changing length & height of the downramp

– Scan parameters  (for a0 = 2.5)
Ldownramp = 10 – 50 m , K = 1.2, 1.3, 1.5

150 MeV 30 pC [LOA, F. Massimo]

Laser

Power 30 TW

Waist w0 12 μm

a0 2.5

Plasma 

Density n0 3 x 1018 cm-3

Extracted beam @K=1.3 Ldr=30 m

Energy 150 MeV

Charge 30 pC

E spread rms 7 %

N x,y (mm.mrad) 0.8, 1.0

Beam loading

Energy

Charge
Espread
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Low-energy LP Injector

• Based on shock injection
– Changing also the laser energy

– Scan parameters  a0 = 2.16, 2.5, 2.79
Ldownramp = 10 – 50 m , K = 1.3, 1.5, 1.7

150 MeV 30 pC [LOA, F. Massimo]

Laser

Power 30 TW

Waist w0 12 μm

a0 2.5

Plasma 

Density n0 3 x 1018 cm-3

Extracted beam @K=1.3 Ldr=30 m

Energy 150 MeV

Charge 30 pC

E spread rms 7 %

N x,y (mm.mrad) 0.8, 1.0
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Low-energy LP Injector

• Based on ionization injection
– Ionization of inner shells of high Z atom (ex. N) at Ipeak of laser pulse

– Features: simple target configuration, moderate laser intensity,
higher injected charge, emittance lower than self-injection scheme

LPGP parametric study [P. Lee et al]
Laser
Power 100 TW
Waist w0 16 μm
Initial a0 1.6
Plasma 
Density n0 max 4 x 1018 cm-3

Extracted beam (descending gradient)

Energy 82.6 MeV
Charge 50 pC
E spread FWHM 11 %
 N x,y 0.33, 2.1 mm.mrad

Changing density profile with cst N2 fraction (1%)

ELISA density profile

Density profile Epeak (MeV) E/E (%)

ELISA 65.7 13.1

Descending gradient 82.6 11.0

Plateau 90.8 12.0

Bunch charge  40-50 pC
Larger emittance in the laser 
polarisation plane  x,y = 0.33, 2.1 m
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Low-energy LP Injector

• Based on ionization injection
– Ionization of inner shells of high Z atom (ex. N) at Ipeak of laser pulse

– Features: simple target configuration, moderate laser intensity,
higher injected charge, emittance lower than self-injection scheme

LPGP parametric study [P. Lee et al]
Laser
Power 100 TW
Waist w0 16 μm
Initial a0 1.6
Plasma 
Density n0 max 4 x 1018 cm-3

Extracted beam Lcell1mm, 0.35% N2

Energy 142 MeV
Charge 27 pC
E spread rms 3.8 %
 N x,y 0.8, 1.8 mm.mrad

ELISA density profile

Changing N2 fraction (ELISA profile)

Extracted beam Lcell1.3mm, 0.35%

Energy 196 MeV
Charge 27 pC
E spread rms 3.2 %
 N x,y 1.3, 2.3 mm.mrad

0.35% N2 and longer cell (11.3 mm)

Patrick Lee - WG6 Tuesday afternoon



EAAC 2017, Sept. 28th Simulations and Performance – A. Mosnier 18

Horizon 2020

A. Mosnier EAAC 2017, Sept. 28th - Simulations and Performance 18

Multi-pulse ionization injection

• Combination of multi-pulse resonant wakefield 
and ionization injection
– A resonant multi-pulse drives a large-amplitude plasma wave

– The wave traps electrons extracted by further ionization

 INO-CNR study [P. Tomassini et al]

Drive Laser (x 8 pulses)

a0 0.64

Waist w0 45 μm

Pulse length 30 fs

Ionization Laser (2nd harmonic)

a0 0.41

Waist w0 3.5 μm

Plasma 

Density n0 5 x 1017 cm-3

Length 6.5 mm

Extracted beam

Energy 265 MeV

Charge 3.8 pC

E spread rms 0.65 %

N x,y (mm.mrad) 0.08, 0.02

Main Features:
 Ultra-low emittance
 Low energy spread
 Energy can be 

extended (laser guiding)

250 TW
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LP accelerating section

• Beam injected from RF photo-injector (RFI)

– Inject the beam with expected parameters from RF 
photo-injector but at low charge ?

• Eb  100 MeV, z ≤ 1 fs, n < 1 m
but Qb  1 pC

– Inject the beam with expected parameters from RF 
photo-injector but at high energy ?

• Qb  few 10's pC, z  10-30 fs, n < 1 m
but Eb  few 100's MeV

• Beam injected from optical injector (LPI)

– Short bunch but higher energy spread
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Velocity Bunching Magnetic compression

LPAS fed by RFI

• External injection low charge, sub-fs @SINBAD
Moderate laser power, [M. Weikum et al, Desy]
Injector exit

Energy  100 MeV

Charge 0.7 pC

Bunch length rms 0.77 fs

Emittance Norm ≤ 0.2 m

Laser parameter

Power 200 TW

Waist w0 42.5 m

a0 1.8

Pulse length FWHM 25 fs

Plasma

density n0 1017 cm-3

Length (plateau) 1.25 cm

 Ultrashort bunch  small energy spread but limited by the
uncorrelated spread due to transverse gradient of the wakefields

 Careful matching required with  1 cm long density upramp

 longer plasma (>10cm) to achieve 1 GeV level with laser guiding
but increase of emittance and Espread due to numerical dephasing

2D OSIRIS simulation (Lehe Solver with anti-Cherenkov stencil)

Though not a working point
in EuPRAXIA

without guiding  224 MeV

ARES Linac
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LPAS fed by RFI

• External injection low charge, sub-fs @SINBAD
 High laser power 100 J [E. Svystun, Desy]

Injector exit

Energy 83.5 MeV

Charge 0.74 pC

Bunch length rms 0.87 fs

Emittance Norm 0.14 m

Laser parameter (100 J)

Power 953.5 TW

Waist w0 64 m

a0 3.1

Pulse length FWHM 100 fs

Plasma

density n0 1017 cm-3

Length (plateau)
25 mm (1 GeV)
65 mm (2 GeV)

p=106 m

1 GeV

2 GeV

E/E<0.1%

Injection phase and ramp optimisation
 small energy spread & emittance growth

Lramp=p
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PA fed by RFI

• 1 GeV from high-energy RF injector
results of EuPRAXIA@SPARC_LAB studies

S-Band photo-injector 100 MeV + X-band 500 MeV

to generate high-quality beams: 1 bunch for LPA scheme
or 1 witness bunch + 1 driving bunch for BPA scheme 

S-band end
100 MeV
E/E0.15%

X-band end
500 MeV

E/E0.06%

emittance & size energy & spread
Focusing at
plasma entrance

Laser driven
Beam driven

Anna Giribono - WG3 Monday afternoon
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PA fed by RFI

Input
Output 

w/o ramp
Output 

with ramp

E [GeV] 536 1.060 1.035

ΔE/E [%] 0.07 1.2 0.07

Î
FWHM

[kA] 1.8 1.8 1.8

Q [pC] 30 27 27

σ
z rms

[μm] 3.7 3.3 3.3

σ
z FWHM

[μm] 3.3 3.2 3.2

ε
n

[mm.mrad] 0.44 0.47 0.47

Î
slice 

[kA] 2.1 2.1 2.1

Simulations with Qfluid [P. Tomassini and A.R. Rossi, Plas. Phys. Cont. Fus. 58, 034001 (2016)] 

Slice emittance Slice energy spread

Laser driven

(ε
n x

2 +ε
n y

2 )1/2

Andrea Rossi - WG1 Tuesday afternoon

Plasma density: 1017 cm-3

Plasma plateau length: 6 cm

Exponential ramp characteristic
length λ


/2 = 2.5 mm

Laser: 6.13 J, 112 fs, a0=1.15

Effective Eacc: 9 GV/m



EAAC 2017, Sept. 28th Simulations and Performance – A. Mosnier 24

Horizon 2020

A. Mosnier EAAC 2017, Sept. 28th - Simulations and Performance 24

PA fed by RFI

plasma entrance

Beam driven

A. Marocchino – WG6 Tuesday afternoon

Simulations with Architect

Plasma density: 1016 cm-3

Plasma plateau length: 27 cm

Ramp length  (ideal) = 5 mm

Driver bunch: Qb=200 pC
z=50 m, E=0.1%, x,y=3 m

Effective Eacc: 1.85 GV/m

plasma exit

Î[kA]
witness entrance exit

E [GeV] 0.5 1

𝜎E [%] 0.06 0.73

Q [pC] 29 29

σ
z rms

[μm] 3.5 3.3


x

[rad] 0.4 0.48


y

[rad] 0.4 0.81


x

[m] 0.73 1.2


y

[m] 1.3 1.2

‰

witness bunch evolution
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FEL Genesis simulation

@ 30 m
6.4 1011

5.2 1011

3.6 1011

without ramps
with tapering

with ramps

without ramps

Radiation growth
along undulator

@ 12 m
2.5 1011

3 1011

1.6 1011

Number of
photons

Laser-driven plasma acc.

Power density @ 15 m
Quasi-single structure

Spectral density @ 15 m
Quasi-single spike structure

beam-driven plasma acc.

without ramps
with tapering

with ramps
5 mm

without ramps

Radiation growth
along undulator

@ 30 m
8 1011

6 1011

3.5 1011

@ 15 m
5 1011

3.6 1011

2 1011

Number of
photons

Power density @ 15 m
Quasi-single structure

Spectral density @ 15 m
Quasi-single spike structure

Undulator u=1.5 cm
Radiation =2.7 nm 

Ephot=0.45 keV
=2.78 nm
Ephot=0.44 keV

Vittoria Petrillo

10 mm
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LPAS fed by LPI

• Quasi-linear regime with plasma channel
– Main parameters inferred from analytical expressions

(checked by WARP 3D simulations + boosted frame)

– Energy gain

1-5 GeV 30 pC [CEA, X. Li / A. Mosnier]

𝑛 𝑟 = 𝑛0 1 +
∆𝑛

𝑛0

𝑟2

𝑟0
2

Laser

strength a0 2

spot size w0 45 m

rms pulse length σ𝑡 64.5 fs

peak power 136 TW

energy 15.5 J

Plasma

Density n0 1.5 1017 cm-3

channel depth  ∆n ∆nc  0.5

acc. length Lacc  30 cm

Injected beam

energy 150 MeV

N x,y 1 mm.mrad

charge Low (1 pC)

Bunch size x,y 1.3 m

For a given energy gain, laser strength 
and norm. spot size, there is a plasma 

density value which minimizes the 
plasma channel length

 Matched beam to preserve the emittance

Eb = 5 GeV

X. Li - Poster session Monday afternoon
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LPAS fed by LPI

• Quasi-linear regime with plasma channel
– Correlated energy spread: induced by wakefield curvature + beam-loading

• beam loading compensation  bunchlength optimisation (further reduced by bunch shaping)

– Slice energy spread: induced by radial dependance of

• accelerating field [negligible when driver (beam or laser) >> bunch size]

• longitudinal field excited by the accelerated bunch [cannot be neglected]

Laser

strength a0 2

spot size w0 45 m

rms pulse length σ𝑡 64.5 fs

peak power 136 TW

energy 15.5 J

Plasma

Density n0 1.5 1017 cm-3

channel depth  ∆n ∆nc  0.5

acc. length Lacc  30 cm

Injected beam

Energy 150 MeV

Energy spread 3 %

N x,y 1 mm.mrad

Charge 30 pC

Bunch size x,y 1.3 m

nb1019 cm-3 >> n0

Correlated Espread optimization

Slice Espread minimization

𝜀𝑛,𝑥 = 1.0 μm

𝜀𝑛,𝑥 = 0.5 μm
 Bunch size 

 Plasma density 

ex. 1017  1016 cm-3

needs 1m plasma length
to reach 5 GeV beam
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Conclusions

• Numerous simulations carried out within the 
EuPRAXIA framework

• Parametric studies of Laser Plasma Injector

– high energy (self-injection), low energy (down-ramp, 
shock injection, ionization, multi-pulse)

• Plasma accelerator section

– Beam injected from RF injector (high energy)
and LP injector (low energy)

• Next steps

– End-to-end simulations (started at SparcLab)

– Error study (Introduce various fluctuations: laser 
imperfections, plasma density, alignment, …)
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END


