Prospects for Plasma Wakefield Acceleration at the MAX IV Laboratory

Olle Lundh

Department of Physics, Lund University, Sweden

EAAC — European Advanced Accelerator Conference

Isola d'Elba, Italy, 24-30 September 2017

Acknowledgements

Lund University Jonas Björklund Svensson Henrik Ekerfelt **MAX IV Laboratory** Francesca Curbis Sara Thorin Sverker Werin

CEA Xavier Davoine

Vetenskapsrådet

Swedish Foundation for Strategic Research

Particle acceleration in a plasma

LWFA

Wakefield driven by laser pulse

- + Lasers are compact and available
- + Internal injection schemes well developed
- External injection (synchronisation) difficult
- Dephasing limits energy in one stage

PWFA

Wakefield driven by particle beam

- + No dephasing, energy gain limited by depletion
- + External injection (synchronisation) "easier"
- Needs large particle accelerator

Outline

- What is MAX IV Laboratory and its 3 GeV linac?
- Can it be used for acceleration of double-bunches?
- Can it be used for PWFA with external injection?

MAX IV Laboratory

Short Pulse Facility

2011: Brunnshög outside Lund

2011-2015: Building construction

2013-2015: Linac installation and commissioning

2015: Buildings completed

Feb 7 2015: 3 GeV achieved in the linac

Midsummer 2016: Inauguration

Sept 2017: ESS construction site

Planned: Science Village, between MAX IV and ESS

MAX IV Linear Accelerator

Operation modes

- Top-up injection for storage rings (~every 5-10 min)
- Driver for Short Pulse Facility (SPF, 100 Hz)

Contact: Sara Thorin

Simulation - full compression

Gun – 1st linac: ASTRA Linac + compressors: ELEGANT

Charge	100 pC
Δt fwhm	10 fs
Peak current	14 kA
Compression factor	500
Slice ɛN	1.5 mm mrad
Proj εN	2.4 mm mrad
Emittance increase (slice)	375 %
Slice ΔE/E	0.25 %

Simulation - small emittance

Gun – 1st linac: ASTRA Linac + compressors: ELEGANT

Charge	100 pC
Δt fwhm	100 fs
Peak current	1.5 kA
Compression factor	50
Slice ɛN	0.42 mm mrad
Proj εN	0.55 mm mrad
Emittance increase	5 %
Slice ∆E/E	0.035 %

Short Pulse Facility - FemtoMAX

FemtoMAX

Ultrafast X-ray beam line for studies of the structure and dynamics of materials

2-20 keV, 10⁷ photons @ 6 keV

Ultrafast laser (10 mJ@800 nm)

Crystal monochromator, focusing mirror, Be-lenses, robot detector holder...

First users 2017, full operation 2018

Contact: Prof. Jörgen Larsson

Bunch compressors - double achromats

Conceptual Design Study

- Two year study of feasibility and detail planning for a soft x-ray laser beamline
- Will start 2018

Wavelength	1-5 nm
Photon energy	0.25-1 keV
Pulse length	10-100 fs
Rep rate	100 Hz
Power (peak)	~1 GW
Ph/pulse	10 ¹¹⁻¹²

Contact: Pedro Fernandes Tavernes (MAX IV)

Short Pulse Facility - PlasMAX proposal

Preliminary focusing system

Preliminary focusing system

Final focus

Adjustable beams

 $n_b = 6 \cdot 10^{17} \text{ cm}^{-3}$

Simulation using CALDER-CIRC

CALDER-CIRC: Lifshitz et al, J Computat Phys 228 (2009) 1803–1814

Plasma density chosen so both bunches are in the bubble

Driver bunch

3.3 kA 31 fs (FWHM) 10 μm (FWHM) 150 pC n_b = 6 · 10¹⁷ cm⁻³

Driver bunch

1.5 kA 55 fs (FWHM) 10 μm (FWHM) 100 pC n_b = 2.6 · 10¹⁷ cm⁻³

Plasma parameters

 $L_{\rm ramp} = 0.5 \text{ mm}$ $n_e = 1.1 \cdot 10^{17} \text{ cm}^{-3}$

Simulation using CALDER-CIRC

Energy gain and spread

Energy spread grows during acceleration to ~3% Momentum compression during driver depletion $\Delta E/E = 1,5\%$ at 5.1 GeV

Efficient energy transfer

~60 % of the energy lost by driver is gained by witness

Prospects for PWFA at MAX IV

Conclusions

Yes, the MAX IV Linac is *excellent* for PWFA

Witness energy gain of 6 GeV/m

There is space (~25 m) in the switchyard

Synergies with existing and planned BLs at the SPF

What's next?

Produce and measure kA-double-bunches

Endorsement by the MAX IV laboratory (enter strategic plan)

- Make a strong science case
- Identify a large user pool

