Effects of pulse shape and plasma density on laser propagation in laserdriven wakefield accelerators

M.J.V. Streeter^{1,2,3,*}, S. Kneip³, M.S. Bloom³, R.A. Bendoyro⁴, O. Chekhlov⁵, A.E. Dangor³,
A. Döpp³, C.J. Hooker⁵, J. Holloway⁶, J. Jiang⁴, N.C. Lopes^{3,4}, H. Nakamura³, C.A.J. Palmer^{1,2},
P.P. Rajeev⁵, J. Schreiber^{7,8}, D.R. Symes⁵, S.P.D. Mangles³, and Z. Najmudin³
¹ The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, United Kingdom
² Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
³ John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
⁴ GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
⁵ Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxon, OX11 0QX, United Kingdom
⁶ High Energy Physics Group, University College London, London WC1E 6BT, United Kingdom
⁷ Fakultät für Physik, Ludwig-Maximilians-Universität München, Coulombwall 1, D-85748 Garching, Germany and
⁸ Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

$$L_{\rm dp} \approx \frac{\omega_0}{\omega_p}^2 \sigma_t c$$
$$L_{\rm d} \approx \frac{\omega_0}{\omega_p}^2 \lambda_p$$

Depletion length

Dephasing length

Decker, C. D. et al. *Physics of Plasmas*, *3*(5) (1996). Lu, W., et al. Physical Review STAB 10(6), 1–12 (2007).

osiris v2.0

lĵ

UCLA

Pulse front etching model:

$$v_{\text{etch}} = c \frac{\omega_p^2}{\omega_0^2}$$
$$v_0 = v_0 - v_{\text{transform}}$$

$$v_0 = v_g - v_{\text{etch}}$$

Lower limit on redshifted photons that drift back faster than the etching velocity:

$$v_g(1) = v_g(0) - v_{\text{etch}}$$

$$c\sqrt{1 - \frac{\omega_p^2}{\omega_1^2}} = c\sqrt{1 - \frac{\omega_p^2}{\omega_0^2}} - \frac{\omega_p^2}{\omega_0^2}$$

$$\omega_1 = \frac{\omega_0}{\sqrt{3}}$$

New model with group velocity dispersion

For a gaussian pulse:

$$L_{\rm evol} \approx \sigma_t c \left(\frac{2}{3} \frac{{\omega_0}^2}{{\omega_p}^2}\right) \sqrt{\frac{1}{2} \ln\left(\frac{P_0}{P_c}\right)}$$
$$L_{\rm dp} \approx 2L_{\rm evol}$$

Acknowledgements

Thank you to the CLF, the STFC and EPSRC and the OSIRIS consortium for supporting this work.

And thank you for listening!