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Experimental setup

• Laser energy ~ 54.8 J 

• Laser duration ~ 642 fs 

• Focus (FWHM) ~ 9.5 um 

• Intensity ~ 8.3 x 1019 W/cm2 

• a0 ~ 8.2 

• Incident angle ~ 8 deg 

• Contrast ratio ~ 106 

• Au foils from 10 - 100 um thick

Aim: Study of jxB heating using linearly or circularly polarised light at near normal incidence.
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Laser driven ion acceleration from solid targets
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Target thickness scan 
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More details on the multi-ring-ed structure

• Rings visible from              
3 - 20 MeV 

• Roughly concentric, 
directed around target 
normal. 

• Central ring disappears 
as energy increases. 

• At highest energy only 
the outer ring remains.
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MeV

Ring radius and centroid position with energy

• Radius fluctuates slightly with proton energy. 
• Centroid of rings drifts away from the laser axis at higher proton energy.

E = 6
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Ring radius and centroid position with energy
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Wedged Cu targets imply rear surface proton source
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Previous observations of rings

Previous observations of single rings, or rings with a central beam, predominantly attributed to: 

• Magnetic fields in the bulk of the target directly influencing protons accelerated from the 
front surface, or causing hollowing of the electron beam. 

• Toroidal magnetic fields in plasma at the rear of the target. 

• Filamentation

Clarke et al., PRL, 2000 MacLellan et al., PRL, 2013
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Electron recirculation modulating the rear surface field?
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How would this modulated electron density affect the proton beam?

Target

ne

• Simulations underway using ZEPHYRS to model evolution of electron 
density at rear surface for different target thicknesses. 

Cowan et al., PRL, 2004



Thank you!


