New Measurement Techniques Using a Novel X-band Transverse Deflecting Structure with Variable Polarization

Daniel Marx, R Assmann, P Craievich, U Dorda, A Grudiev, B Marchetti 25 September 2017

With thanks to collaborators and colleagues (listed at end)

daniel.marx@desy.de

Outline

Introduction

- Technology
- The collaboration
- The SINBAD-ARES linac

Planned measurements at SINBAD

- Overview
- 3D charge density reconstruction
- Bunch energy measurement
- Applications

Novel X-band TDS with variable polarization

Variable Polarization Circular TE11 Mode Launcher

A. Grudiev, CLIC-note-1067 (2016)

This new design allows for changing the streaking direction of the TDS.

Collaboration to build and test the first prototype

At DESY, also FLASHForward, FLASH2 and potentially XFEL involved

B Marchetti et al. Proc. IPAC'17, paper MOPAB044, pp. 184-187.

SINBAD-ARES linac

> Bunch Length

- > 3D charge density profile using tomographic reconstruction (real space)
- > Slice emittance measurement (transverse phase space)
- > Slice energy measurement using dipole (longitudinal phase space)

6D phase space characterization

- > Aim: to reconstruct the 3D charge density distribution
- Relies on streaking at multiple angles => completely new measurement
- > Principle:
 - Streak beam at different angles and measure intensity at screen
 - Slice profiles in time
 - Combine 1D profiles from different streaking directions to form a 2D transverse profile for each temporal slice
 - Stack slices together to form complete 3D charge profile reconstruction

D Marx et al 2017 J. Phys.: Conf. Ser. 874 012077

Daniel Marx | EAAC 2017 | 25 September 2017 | Page 6

Beam parameters:

Energy [MeV]	84.2
Charge [pC]	3
σ_t [fs]	5.15
$\sigma_{x/y}$ [µm]	87.9 / 96.8
$\epsilon_{x/y}^{\text{norm}}$ [mm mrad]	0.224 / 0.190
$\beta_{x/y}$ [m]	5.69 / 8.14
$\alpha_{x/y}$	-0.377 / 0.258

Lattice: TDS (two 0.8-metre cavities) + 5-metre drift

Simulations in *elegant*

Tomographic reconstruction in *Python*

16 streaking angles

No space charge No jitter No misalignments

D Marx et al 2017 J. Phys.: Conf. Ser. 874 012077

Input beam used for test simulations at the TDS

Example of correlation x-z that we wish to detect

Input beam production simulated by J. Zhu

> 16 xy screen profiles [2D]

Convert y to t and divide into slices (0.85 fs) [2D]

- For each slice, take projection on x axis [1D] and combine using tomographic reconstruction (SART algorithm) [2D]
- Stack slices [3D]

D Marx et al 2017 J. Phys.: Conf. Ser. 874 012077

Actual distribution at screen with TDS off

Reconstruction

Simulations in *elegant*

D Marx et al 2017 J. Phys.: Conf. Ser. 874 012077

Combine TDS with dipole

Induced energy spread

- > Panofsky-Wenzel Theorem:
 - Transverse deflection only possible if there is a transverse gradient of the longitudinal electric field present

$$\Delta \vec{p}_{\perp} = \left(\frac{e}{\omega}\right) \int_0^L (-i) \nabla_{\perp} E_z dz$$

 $\nabla_{\perp} E_z \neq 0$ E_z present

Relative momentum gain: uncorrelated + correlated

$$\sigma_{\delta} = \frac{eV_0k}{pc} \cdot \sigma_y = K \cdot \sigma_y \qquad \qquad \frac{d}{dz}\delta = \frac{1}{6}K^2L$$

Fundamental resolution limitation

$$\sigma_{\delta} \cdot \sigma_{\zeta} > \frac{\epsilon_y}{\sin(\Delta \Phi)}$$

C Behrens and C Gerth, *Proc. DIPAC09*, paper TUPB44 C Behrens and C Gerth, *Proc. DIPAC11*, paper TUPD31

$$T = \begin{pmatrix} 1 & L & KL/2 & 0 \\ 0 & 1 & K & 0 \\ 0 & 0 & 1 & 0 \\ K & KL/2 & K^2L/6 & 1 \end{pmatrix}$$

Daniel Marx | EAAC 2017 | 25 September 2017 | Page 13

Slice energy measurement

Applications

- SINBAD will provide short bunches for use as a witness beam in LWFA experiments and for testing dielectric structures
- > TDS will allow characterization of input beam
- Dielectric structures
 - Inject asymmetric beams
 - Characterizing beam important for matching & aperture considerations

LWFA experiments

- Plasma fields (and matching conditions) have longitudinal dependence in certain regimes
- Accelerating fields also influenced by beam offsets so charge profile can help, e.g. for beam loading

Summary

- New X-band TDS being developed for use at DESY & PSI facilities
- > Allows streaking of bunch at all angles
- Allows several different measurements of beam, which together provide a characterization of the beam
- Novel 3D charge density reconstruction and longitudinal phase space reconstruction techniques presented
- Induced momentum spread and longitudinal resolution make measurements at short bunch lengths a challenge
- > Further studies needed, incl. collective effects
- Key applications for LWFA and dielectric experiments

Contact: daniel.marx@desy.de

Present team working on application of X-band technology at DESY:

B. Marchetti, R. Aßmann, B. Beutner, J. Branland, F. Christie, R. D'Arcy, W. Decking, U. Dorda, B. Faatz, M. Foerse, J. Herrmann, M. Hoffmann, M. Hüning, R. Jonas, G. Kube, O. Krebs, S. Lederer, F. Ludwig, F. Marutzky, D. Marx, J. Osterhoff, I. Peperkorn, F. Poblotzki, J. Rothenburg, S. Pfeiffer, M. Reukaff, H. Schlarb, M. Scholz, S. Schreiber, J. Rönsch-Schulenburg, M. Vogt, G. Tews, A. Wagner, T. Wilksen, K. Wittenburg

In addition, we are supported by colleagues from CERN & PSI, including:

- > A. Grudiev, W. Wuensch, N. Catalan Lasheras, G. Mcmonagle (CERN)
- > P. Craievich, M. Bopp, M. Pedrozzi, R. Zennaro, H. Braun et al. (PSI)