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Overview I. Ion Source

II. Collimation III. Phase Rotation

2017
� analysing transported heavy ion beam of latest beamtime

2018-2020
� further improvement of heavy ion transport and phase focusing

� reconstruction of LIGHT to create capabilities for energy loss 
measurements in plasma with pulse lengths T<1 ns
� dedicated target chamber for LIGHT ion source and collimation
� implementation of rf cavities and beam transport elements
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Outlook

Target Normal Sheath Acceleration (TNSA):
� intense ion source: 1011 – 1013 protons in  ~ 1 ps

� low emittance: < 0.01 mm mrad transversal, 10-4 eV s longitudinal [4]

� huge accelerating field gradients: MV/μm

� detection of full proton beam with radiochromic film imaging spectroscopy [6]                                                                               
@4 cm behind source

� source size @10 MeV: approx. 50µm

Challenge: Efficient acceleration of heavy ions

Problem: Hydrocarbon pollutions coating surfaces       best q/m accelerated efficient

protons screen electric field

only protons eff. accelerated

Solution: Elimination of hydrocarbons on surface 

F. Nürnberg, TU Darmstadt (2010)TNSA mechanism
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Energy Spectrum [6] 
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13 µm Tungsten
≈0.8 µm CaF2

resistive heating

Based on work from: M. Hegelich et al., MeV Ion Jets from Short-
Pulse-Laser Interaction with thin foils, PRL 89,8 (2002)

Heated to 1020°C

Pulsed solenoid acts as collimator for divergent beam
� magnetic field: 5 – 10 T

� in-air solenoid (no arcing)

� 40.5-mm aperture

� second order focusing effect

Energy selection by means of chromatic focusing

Efficient transport of protons already demonstrated:
� 34 % of protons in 8 MeV ± 0.5 MeV energy range

� equals NP>109 protons
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Ion species and

charge state Energy of Ions
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III. Phase Rotation (cont.)

Implementation of RF-Cavity
� GSI rf cavity

� 0.55 m long

� 3-gap spiral resonator

� power supplied by the UNILAC rf generator

� 108.4 MHz (UNILAC)

� rf power >100 kW

� applied potential >±1MV

� longitudinal extent of beam at entry of cavity depends on

� distance target to cavity

� speed of ions

In case of slow ions (heavy ions) and cavity at 2 m

Tpulse >>  Trf (= 9.2 ns) multi-bunching

Solution: Move cavity closer to target (Pos. A)

Phase Rotation with RF-Cavity
� timing of rf-phase to achieve injection of ions at -90° synchronous phase

� longitudinal divergence depends on rf-power:

� “freezing” of longitudinal extent = energy compression

� over-compensation of longitudinal divergence => short and intense beams (TFWHM<1ns)

Energy phase diagrams: a) 3m behind target; b) 3m behind target with rf-cavity; c) 6m behind target with rf-cavity = shortest bunch

IV. Final Focussing and Detection

Energy Spectrum

Phase focussing of 0.95 MeV/u F7+

Generation and Transport of heavy Ions successfully demonstrated!
• formation of multitude of peaks due to bunching in cavity and different 

charge states
• energy/u and particle numbers lower as for protons because of overall 

lower generation efficiency

Final focussing with second solenoid
� focus radius of below 1 mm from simulations

� for protons already demonstrated

Detection resulting beam with diamond detecor
� 13 μm thick diamond membrane

� 1 mm2 of sensitive area

� impedance matching for fast readout

PHELIX “100TW”
Imax=6x1019W/cm²

laser pulse 
compressor
→ 650fs

laser
diagnostics

About the Project [1,2,3]:
� LIGHT for Laser Ion Generation, Handling and Transport

� collaboration of TU Darmstadt, GSI, University Frankfurt, HI Jena, HZDR

� ion acceleration driven by the GSI PHELIX laser 

� beam shaping via conventional accelerator technology (rf cavity)

LIGHT beamline at Z6 (GSI)

Pos. B

Pos. A

Simulation of smallest focus for F7+


