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Introduction
We consider the strongly non-linear (bubble) regime of plasma wakefield and
build a model describing the electromagnetic field components distributions in
the wakefield. The main results are
1. We develop a phenomenological model of the bubble regime, assuming that
there are no plasma electrons inside the bubble, while on its boundary there
is a thin electron sheath which screens the bubble from plasma.

2. Using the smallness of the electron sheath width, we develop a perturbation
theory which allows us to calculate simple explicit expressions for the
components of the electromagnetic field both inside and outside the bubble.

3. The theory is verified by particle-in-cell (PIC) simulations.

Basic assumptions
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Electron density (blue) in a bubble in 3D
particle-in-cell (PIC) simulations.
The electron bunch pushes plasma
electrons, leading to the formation of the
bubble.

We consider wakefield in the bubble regime
excited either by an electron bunch or a
laser pulse. All simulations are done for the
electron driver, but the results are
applicable for the laser driver.
Assumptions:

▶ Cylindrical geometry r = (r, 𝜙, z).
▶ Axial symmetry (no dependence on 𝜙).
▶ Radially non-uniform plasma
n(r) = n(r).

▶ Ions are immobile.
W. Lu et al., Phys. Rev. Lett. 96, 165002 (2006).
J. Thomas et al., Phys. Plasmas 23, 053108 (2016).

Potentials and fields
We use quasi-static approximation, in which fields propagate with the velocity of
light, and the structure of the fields does not change

f(r, z, t) = f(r, 𝜉), 𝜉 = t − z,
EM fields are described by the vector potential (Az,Ar) and the wakefield
potential Ψ = 𝜑 −Az.
The solution to the Maxwell’s equations is written as

Ez =
𝜕Ψ
𝜕𝜉 B𝜙 =

1
r∫

r

0
(Jz +

𝜕2Ψ
𝜕𝜉2 ) r

′ dr′

Er = −𝜕Ψ𝜕r + B𝜙 Ψ = −∫
∞

r

dr′
r′ ∫

r′

0
(Jz − 𝜌)r″ dr″

All fields depend on Jz and Jz − 𝜌. Knowing these two sources is sufficient to
calculate all field components.

Models for the sources

We look at numerical simulations in order to determine
proper models for Jz and Jz − 𝜌. Plasma in our
simulations has a hollow channel.

Inside the bubble, only electron bunches contribute to
Jz. On the boundary, there is a thin electron sheath.
Currents in the electron sheath rapidly decay to zero.

Jz(𝜉, r) = {
Je(𝜉, r), r < rb(𝜉)
J0(𝜉)gJ (

r − rb(𝜉)
ΔJ

) , r ≥ rb(𝜉)
The boundary condition for J0 is limr→∞ rB𝜙 = 0.
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Inside the bubble, Jz − 𝜌 = −𝜌i.
Driving and witness bunches do not contribute to Jz − 𝜌.
Outside the bubble, Jz − 𝜌 rapidly decays.

Jz − 𝜌 = {
−𝜌i(r), r < rb(𝜉)
S0(𝜉)g (

r − rb(𝜉)
Δ ) , r ≥ rb(𝜉)

The boundary condition for S0 is limr→∞Ψ = 0.

We can calculate the fields as long as we know rb(𝜉),
Δ, g, ΔJ, and gJ.

Boundary of the bubble
The width of the electron sheath is small
compared to the size of the bubble

Δ,ΔJ ≪ rb.
Using this assumption, we get an equation for the
boundary of the bubble.

A(rb)
d2rb
d𝜉2 + B(rb)(

drb
d𝜉 )

2
+ C(rb) = 𝜆(𝜉)

𝜆(𝜉) = −∫
rb(𝜉)

0
Je(𝜉, r′)r′ dr′

Function rb(𝜉) can be analytically calculated.
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Dashed lines correspond to the
analytical solution.

A. A. Golovanov et al., Quantum Electron. 46, 295 (2016).

Perturbation theory
At this point, we can analytically calculate all fields distributions. However, the
results can be significantly simplified if we use the smallness of the electron
sheath thickness Δ,ΔJ ≪ rb(𝜉).
We begin with the expression for Ez

Ez(𝜉, r) = − 𝜕
𝜕𝜉 [∫

∞

r

dr′
r′ ∫

r′

0
(Jz − 𝜌)r″ dr″]

In general, this expression requires numerical integration and differentiation.
We develop a perturbation theory with respect to 𝜖(rb) = Δ/rb

Ez = Ez,0(𝜉, r) + 𝜖(rb(𝜉))Ez,1(𝜉, r) +⋯ ≈ Ez,0

The answer is very simple

Ez(𝜉, r) =
⎧⎪
⎨⎪
⎩

Si(rb)
rb

drb
d𝜉 , r < rb(𝜉)

Si(rb)
rb

drb
d𝜉 ∫

∞

(r−rb)/∆
g(X) dX , r ≥ rb(𝜉)

where Si(r) = ∫r
0 𝜌i(r′)r′ dr′

A similar procedure is applied to all other field components.
The perturbation theory allows us to find simple explicit expressions for the
field components.

Results
We perform simulations with an electron driver using the 3D PIC code Smilei and
compare the results to our model.
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The comparison shows that the model correctly describes the fields both inside
and outside the bubble.
A. A. Golovanov, I. Yu. Kostyukov, J. Thomas, A. Pukhov, Phys. Plasmas 24, 103104
(2017).
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