Theoretical and experimental studies on plasma generation.

Tailoring plasmas for wakefield accelerators

Gabriele Tauscher^{1,2} and Lucas Schaper² 3rd European Advanced Accelerator Concepts Elba, 25th September 2017

¹ Hamburg University
 ² Deutsches Elektronen-Synchrotron DESY

S. Bohlen^{1,2}, K. Poder¹, J.-P. Schwinkendorf^{1,2}, T. Mehrling², S. Wesch², L. Goldberg^{1,2}, M. Quast^{1,2}, A. Aschikhin^{1,2}, J.-H. Röckemann^{1,2}, J. Dale, M. Streeter², and J. Osterhoff²

FLASHForward

> Laser parameters and focussing determine ionisation degree

FLASHForward

> Laser parameters and focussing determine ionisation degree

FLASHForward

- Laser parameters and focussing determine ionisation degree
- > Electron bunch drives wakefields

FLASHForward

- Laser parameters and focussing determine ionisation degree
- > Electron bunch drives wakefields

More details on FLASHForward in Jens Osterhoff's talk on joint WG1/WG8 session Wednesday 18:45

FLASHForward

- Laser parameters and focussing determine ionisation degree
- Electron bunch drives wakefields
- Control of plasma properties crucial for experiments

Details e.g. in Alexander Knetsch's talk in WG1 18:00

FLASHForward

Laser parameters and focussing determine ionisation degre

1.25 Gel

drive beam energy

- Electron bunch drives wakefields
- Control of plasma properties crucial for experiments
- Assess ionisation properties

800 nm, 600 mJ, 25 fs

500 pC, 2,5 K

final focussing

~200 mm

gascell

bending magnet

dissociation ionisation

$$H_{2} \xrightarrow{4.5 \text{ eV}} H_{2} + H_{1} \xrightarrow{2x13.6 \text{ eV}} H_{1} + H_{1} + H_{1} + H_{1} + H_{2} + H$$

 Molecular fragmentation dynamics are more complex

dissociation ionisation

- Molecular fragmentation dynamics are more complex
- Atomic tunnelling ionisation is dominating^[1]
- > Dissociation processes take time

[1] Keldysh, J. Exptl. Theoret. Phys. (U.S.S.R.) (1964)

Classical 1D simulation of H₂ fragmentation dynamics ^[2]

- Incorporating full fragmentation dynamics (ionisation + dissociation)
- Applicable in the case of ultrashort and intense laser pulses^[3]

Classical 1D simulation of H₂ fragmentation dynamics ^[2]

[4] Zavriyev et al., *Phys. Rev. A vol. 42* (1990)[5] Bandrauk, *Molecules in Laser Fields* (1994)

Gabriele Tauscher – gabriele.tauscher@desy.de | EAAC 2017 | 25th Sept | Page 14

Classical 1D simulation of H₂ fragmentation dynamics ^[2]

- Short pulse regime: pure ionisation
- Intermediate regime: dissociative ionisation
- Long pulse regime: dissociation before ionisation may be possible

[4] Zavriyev et al., *Phys. Rev. A vol. 42* (1990)[5] Bandrauk, *Molecules in Laser Fields* (1994)

Gabriele Tauscher – gabriele.tauscher@desy.de | EAAC 2017 | 25th Sept | Page 15

Classical 1D simulation of H₂ fragmentation dynamics^[2]

- Short pulse regime: pure ionisation
- Intermediate regime: dissociative ionisation
- Long pulse regime: dissociation before ionisation may be possible
- > The heavier the molecule, 200 the longer time until dissociation limit due to inertia

- > ADK theory^[6] based formula^[7,8,9] for static ionisation rates
- Rate equations describe population of states

[6] Ammasov, Delone, Krainov, *Soviet Physics – JETP vol.91 no.64* (1986)
[7] Zhang, Lan, Lu, Phys. Rev. A 90 (2014)
[8] Tong, Lin, Journ. Phys. B: At. Mol. Opt. Phys. (2005)

[9] Tong, Zhao, Ling, Phys.Rev. A, 66 (2002) Gabriele Tauscher – gabriele.tauscher@desy.de | EAAC 2017 | 25th Sept | Page 17

DESY

> Peak intensity of full ionisation, and ionisation threshold assessible

- > Peak intensity of full ionisation, and ionisation threshold assessible
- Molecular ionisation at higher peak intensity than atomic ionisation
- > Full ionisation shifts towards lower peak intensity for longer pulses

> Peak intensity of full ionisation, and ionisation threshold assessible

Experimental plasma interferometry in Hydrogen

- Line-of-sight integrated phase shift, optical resolution < 2 µm</p>
- > Abel inversion: spatially resolved electron density
- Explored influence of pulse duration on electron density

Experimental plasma interferometry in Hydrogen

- Experiment just before conference: data analysis is pending
- Results to be published soon

Thank you for your attention!

Thanks to the whole FLA Desy plasma group:

L. Schaper, C. Palmer, P. Niknejadi, B. Sheeran, A. Knetsch, P. Pourmoussavi, S. Schroeder, V. Libov, S. Bohlen, K. Poder, J.-P. Schwinkendorf, T. Mehrling, S. Wesch, L. Goldberg, A. Martinez de la Ossa, M. Quast, A. Aschikhin, J.-H. Röckemann, J. Dale, M. Streeter, B. Schmidt and J. Osterhoff

Preliminary experimental results in Hydrogen

- Data analysis is pending
- > Theoretical ionisation model looks promising
- Improve model for ionisation defocussing
- Plan to publish results soon

Benchmark ionisation model

> Perliminary results confirm ionisation model quantitavely

Gabriele Tauscher – gabriele.tauscher@desy.de | EAAC 2017 | 25th Sept | Page 26

Pure ionisation channel theoretical model

- equations for short and long pulse regime
- Static tunnelling ionisation rates Γ_{TBSI}(E_L) from extended Empirical ADK^[2] formula applicable for atoms and molecules far into BSI regime^[3,6,7]

Hydrogen Tunnelling Ionisation Rates

The Keldysh Parameter

Density of Hydrogen States

Dependency on Pulse Duration and Peak Intensity

Appearance Intensities of Full Ionisation Helium AISI and AIDI of Molecular Hydrogen

Electron Yield

Atomic Ionisation Potentials

Ionisation Models

Empirical TBSI formula

[2] Ammasov, Delone, Krainov, Soviet Physics - JETP vol. 91 no. 64 (1986)

[3] Empirical formula for over-barrier strong-field ionization; Zhang, Lan, Lu, Phys. Rev. A 90 (2014)

[4] Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime; Tong, Lin, Journ. Phys. B: At. Mol. Opt. Phys. (2005)

[5] Theory of molecular tunneling ionization; Tong, Zhao, Ling, Phys. Rev. A, 66 (2002) 5/18/2016
G. Tauscher Master M

EDDIT Method

DESY

Abel Inversion Method

Abel Inversion Method

FLASHForward Focus

DESY

Fragmentation Channels of Molecular Hydrogen

Classical Simulation for One-Dimensional

 $H_{2}^{[1]}$

- Ionisation and Dissociation -

• Multiphoton Ionisation

 $\overrightarrow{r_1}$

 $\vec{\mathbf{r}}_{2}$

18/2016

 $\vec{\mathbf{R}}_1$

 \vec{R}_{9}

- Tunnelling Ionisation <u>not</u> considerable!
- Barrier-Suppression Ionisation
- G. Tauscher Master Scherogesyde FEAC 2014025 Sept Page 40 [1] - Qu, et al. - Phys. Rev. A 57, 4528

2nd Approach: Determine Electron Density via Case Analysis

Real dissociation time of the nuclei – short pulses Compare to ionisation thresholds from ADK theory:

Discern dominating process: the Keldysh

Dominating process: tunneling!

Intensity increase distorts the potentials: BSI

- states get trapped (bond hardening)
- states get released (bond softening)
- ATI (above threshold ionisation)
- BTI (below threshold ionisation)
- CREI (charge enhanced resonant ionisation)

Possible Response Channels of H₂:

Dissociation vs. Ionisation

Ionisation and Dissociation of Hydrogen

Advantage: minimal transveral emittance

- decoupling of accelerating and focusing wakefields in the comoving frame
 - low density region contributes to the focusing forces (linear)
 - high density in the channel walls determine accelerating fields

Gal Taluscher Master^{auscher@desy.de} | EAAC 201748^{25th} Sept | Page 48 Kolloquium

Simulations accomplished by Timon Mehrling

[1] T.C. Chiou et al., Phys. of Plasmas 2, 310 (1995) 5/18/2016

Hydrogen Interacting with Laser Pulses Which ionisation path is favoured?

- Ionisation requires higher energies
- Dissociation takes at least (20-40) fs^[1]

Electron Densities as Function of Peak Intensity

Population Evolution of H_2 -States

Classical 1-dimensional Simulation^[5]

