

EuPRAXIA @ SPARC_LAB Beam Dynamics studies for the X-band Linac

Cristina Vaccarezza

On behalf of SPARC_LAB collaboration

- Introduction
- The Linac layout & parameter list
- WP's details
- BD studies for the nominal cases
- FEL simulation results from <u>V. Petrillo</u>
- Static and dynamic error studies: first results
- Conclusions

C. Vaccarezza

In the framework of the Eupraxia Design Study an advanced accelerator facility EUPRAXIA at SPARC_LAB has been proposed to be realized at Frascati (Italy) Laboratories of INFN.

Two advanced acceleration schemes will be applied:

- an ultimate high gradient 1 GeV X-band linac and
- a plasma acceleration stage to provide accelerating gradients of the GeV/m order.

A FEL scheme is foreseen to produce X-ray beams within 3-10 nm range.

A 500-TW Laser system is also foreseen for electron and ion production/acceleration experiments and a Compton backscattering Interaction is planned together with extraction beamlines at intermediate electron beam energy for neutron beams and THz radiation production.

See M. ferrario talk today WP1-8 session at 18:00

The Linac Layout

- S-band photoinjector: Gun+2÷3 acc. structures
- ➤ X-band Linac: 32 structures (50 cm)
- ➢ Plasma Acceleration Stage
- Magnetic chicane& Transfer Lines

Linac 1 & 2 parameter list for 3 WP's

- WP1: Low Charge-High Current from the Photoinjector: 30 pC-3KA (FWHM) per bunch with only velocity bunching, suitable both for Beam Driven and Laser driven acceleration in Plasma
- WP2: Low Charge-Low Current from Photoinjector: 30 pC-100A per bunch, velocity bunching coupled with a magnetic longitudinal compression stage in the chicane to reach the desired current I = 3kA (Hybrid scheme), suitable both for Beam Driven and Laser driven acceleration in Plasma
- WP3: High charge-Low Currrent from Photoinjector: 200 pC-70 A, with and without the longitudinal bunch compression in the magnetic chicane to serve both the SASE-FEL, with peak current lpk=2kA, and the Compton Source in the high flux operation scheme.

Beam Parameter	Unit		L1			L2	
		WP1	WP2	WP3	WP1	WP2	WP3
Initial energy	GeV	0.01	0.17	0.17	.21	.28	.51
Final energy	GeV	0.21	0.28	.55	.55	0.55	1.06
Active Linac length	m		6.0			10.0	
Accelerating Gradient	MV/m	20.0	20.0	57.0	36.0	26.8	57.0
RF phase (crest at 0)	deg	-20.0	-20.0	-12.0	-19.5	0	+15.0
Initial rms energy spread	%	0.30	0.22	0.67	0.15	0.22	0.47
Final rms energy spread	%	0.15	0.22	0.47	0.07	0.06	0.09
rms bunch length	μ m	3	20	112	3	4	20

Twiss Parameters & emittance dilution in the Transfer line to undulator (WP1 case)

Beam Driven

Twiss parameters for 30pC_500MeV_PL_wBC_noLH_3Sband_from_copl_short_ramp

30pC_50DMeV_PL_wBC_noLH_3Sband_from_capl_short_ramp

• Laser Driven

30pC_500MeV_PL_wBC_noLH_3Sband_from_capl_andrea_ramp_cut

C. Vaccarezza

C. Vaccarezza

Long & Transv Wake field

Pill box cavity model considered for the wake feld calculations: a is the iris radius, L is the cell length. The asymptotic values of the longitudinal and transverse wake functions have been calculated according to K. Bane SLAC{PUB{7862 (Revised) November 1998 with a=3.2 mm}

Geometrical parameters				
a[mm]	2÷5			
b [mm]	9.828÷10.917			
d [mm]	8,332 (2π/3 mode)			
r [mm]	1			
t [mm]	2.5			

Longitudinal and transverse wakefield calculated for an iris radius of 3.2 mm and a cell length of 8.332 mm.

WP1 case: 30 pC beam evolution from Cathode to Undulator

• before the plasma acceleration • undulator entrance (capillary entrance)

C. Vaccarezza

Linac BD results for Driver+Witness (WP1 extended)

Transverse distribution at the entrance of the plasma capillary.

SPARC

Longitudinal phase at the entrance of the plasma capillary.

C. Vaccarezza

Z (cm)

Plasma stage

Courtesy of A. Marocchino & V. Petrillo

Characteristics of the electron beam at the entrance of the undulator

Courtesy of V. Petrillo

Choice of the radiation scheme and undulator parameters

The comparison between the possible radiation schemes makes clear that seeding and cascaded techniques should require a linear space larger than the allocated one and could be considered for future upgrades. The stringent condition i) induced us to consider as primary option the use of a **conventional, not segmented undulator** and the operation in the **SASE mode**, with the possibility of exploiting the **single spike regime** for increasing the radiation coherence, combined potentially with the undulator tapering.

$$\lambda = \frac{\lambda_u}{2\gamma^2} (1 + \frac{K^2}{2})$$
$$\gamma = 2000$$

Courtesy of V. Petrillo

FEL Genesis simulation with particle driven plasma accelerated electron beams

0

-15

Courtesy of V. Petrillo

-10

s(µm)

Undulator @SPARC_LAB ENEA-Kyma $\lambda_u=1.5 \text{ cm},$ $a_w=0.7$ K=1 $L_{und}\approx 30 \text{ m}$

0.2mg

Radiation:

$$\lambda = \frac{\lambda_u}{2\gamma^2} (1 + \frac{K^2}{2})$$

E=1 GeV λ =2.78 nm E_{phot}=0.44 keV

Case	Energy (GeV)	К	λ (nm)	$\overline{\beta_x}, \overline{\beta_y}$ (m)	α _x (m)	β _x (m)	α _y (m)	β _y (m)	<i>Q_{1G}</i> (Т)
Α	0.8	1	4.59	4.274	-0.478	0.497	3.269	4.858	3.501
В	0.0	1.45	6.28	4.225	-0.475	0.5	3.167	4.775	3.453
С	1	1	2.94	4.289	-0.479	0.496	3.303	4.885	4.396
D	1	1.45	4.02	4.258	-0.477	0.498	3.237	4.832	4.358
E	10	1	2.04	4.298	-0.48	0.495	3.321	4.9	5.288
F	1.2	1.45	2.79	4.276	.0-478	0.497	3.275	4.863	5.256

Courtesy of V. Petrillo

FEL Genesis simulation with particle driven plasma accelerated electron beams

	Units	Particle external injection Without ramp(al)	Particle external injection With ramp 0.5 cm(b)	Particle external injection With ramp 1 cm(c)	Optimized case with tapering(d)
Rms Energy Spread	%	0.52	0.64	0.79	0.52
Peak current	kA	3.1	3.1	2.3	3.1
Bunch charge	pC	30	30	30	30
Bunch length rms	μ m (fs)	3.455 (11.5)	3.27(10.9)	3.83(12.7)	3.45 (11.5)
Rms norm. emittance	μm	0.41-0.46	0.47-0.77	0.78-1.5	0.41-0.46
Slice Length	μm	1.39	1.45	1.51	1.39
Slice Charge	pC	12	13	11.8	12
Slice Energy Spread	%	0.022	0.053	0.055	0.022
Slice norm. emittance	μm	0.39-0.309	0.48-0.53	0.7-0.64	0.39-0.309
Undulator period	cm	1.5	1.5	1.5	1.5
K		0.987	0.978	0.987	0.987-0.01z
ρ (1d/3d)	x 10 ⁻³	21.9	1.92-1.44	1.84-1.41	2-1.9
Radiation wavelength	nm (KeV)	2.79(0.45)	2.78 (0.45)	2.78 (0.45)	2.79 (0.45)
Saturation length	m	14-25	14-25	>35	15-35
Saturation power	MW	450-770	270-460	170	850-1200
Energy	μJ	23-49	14.6-24	13(at 30 m)	42-65
Photons/pulse	x 10 ¹⁰	33-56.	20.3-33.5	18	58-91
Rel. Bandwidth	%	0.21-0.3	0.12-0.3	0.4	0.25-0.55
Rad. Size	μm	160-180	180-25	400	48-52
Divergence	µrad	45-41	54-52	62	170-240
Brilliance per pulse	(s mm ² mrad ² bw(‰)) ⁻¹	1.06-1.2 10 ²⁷	6.6-2.3 10 ²⁶	2 10 ²⁵	1.2-3.7 1027

- <u>In the plasma capital</u>
 - Simulations with QFluid¹
 - Plasma density: 10¹⁷ cm⁻³
 - Plasma plateau length: 6 cm
 - Exponential ramp with characteristic length $\lambda_r = 2.5 \text{ mm}$
 - Ramps span from 10^{14} to 10^{17} cm⁻³ for a total length L_r = 1.75 cm
 - Effective accelerating gradient: 9 GV/m

• $\epsilon_{n tr} = (\epsilon_{n x}^{2} + \epsilon_{n y}^{2})^{1/2}$

Q-Fluid simulations of LWFA external injection

	Input	Output w/o	Output with				
		ramp	ramp				
E [MeV]	536	1060	1035				
ΔE/E	7 10-4	1.2 10 ⁻²	7 10-4				
I _{peak FWHM} [KA]	1,8	1,8	1,8				
Q [pC]	30	27	27				
σ _{z rms} [μm]	3,7	3,3	3,3				
σ _{z FWHM} [μm]	3,3	3,2	3,2				
ε _{n tr} [mm- mrad]	0,44	0,47	0,47				
I _{peak slice} [kA]	2,1	2,1	2,1				
2.5x10 ⁻¹ _	δ _ν /γ n ο	ramn]				
$2.0 \times 10^{-1} - \frac{\delta \gamma / \gamma \text{ ramp}}{I} - \frac{\delta \gamma / \gamma \text{ ramp}}{I} - \frac{2000}{I}$							
1.5x10 ⁻¹ -			- 1500				
% - 1.0x10 ⁻¹ -			1000	Amp			
5.0x10 ⁻² -	Slice es	pread	- 500				
0.0	-4 -3	-2 -1 0 1					
034001 (2016)		z (μm)					

Courtesy of V. Petrillo

FEL simulation with **linac accelerated** electron beams, high flux case

Courtesy of V. Petrillo

C. Vaccarezza

X band structures misalignement effect, Placet code (A. Latina CERN)

Static and dynamic errors simulation:

Steerer + BPM Beam error kick

- ✓ Static errors:
 - 70 μ m (x ,y) random misalignment on RF's structures and magnetic elements
 - 150 μ m misalignment kick to the beam, ex. girder to girder
 - 100 random simulated machines
- ✓ Dynamic errors:
 - Quad strength errors 0.1% rms
 - Sterer kick errors 0.1% rms (1 μ rad rms)
 - 100 random machine for each static arrangement

End of line (capillary/undulator) entrance:

- Centroid distribution
- Beam spot size, emittance & energy spread distribution
- ✤ Along the linac:
 - Min,Max & Mean : trajectory, beam size, emittance & energy spread

End of line beam size: WP1-2-3 results

End of line beam size: WP1-2-3 results w BPM misalignment (\pm 3 μ m)

25

End of line centroid : WP1-2-3 results

Trajectory steering example wo DSF

11 25:17 21 Sep 17 $< \times >$ $\mathbf{H}_{\mathbf{H}}$ 0.3 < y> (mm) < y> 0.2 0.1 0.0 and -0.1 $\stackrel{\wedge}{\stackrel{}_{\sim}}$ -0.2 -0.3 10 20 30 40 (m)S

3rd EAAC 17, 24-30 September

Trajectory envelope: WP1,2,3 results w BPM mis.

SPARC

SPARC LAB

Beam envelope: WP1,2,3 results

Beam envelope: WP1,2,3 results w BPM mis.

Energy spread along the linac: WP1,2,3 results

Static plus dynamic errors summary table

	WP1 (@capillary in)	WP2(@capillary in)	WP3(@undulator in)
Q (pC)	30	30	200
E (GeV)	0.5	0.5	1.0
σ _{cx} (μm)	0.5	0.4	10
σ _{cy} (μm)	0.3	0.3	30
σ_{x} (μ m)	2	1	30
StDev σ_{x} (μ m)	0.03	0.1	10
σ _y (μ m)	1	1	40
StDev $\sigma_{ m y}$ (μ m)	0.01	0.02	5
σ _δ (%)	0.07	0.08	.14

- The X-band Linac for the EUPRAXIA@SPARC_LAB is under design
- This stage focuses on three different WP's nominal requirements and is meant to explore the line acceptance and robustness
- BD studies and FEL simulations have been presented for the nominal cases
- As first test bench the active elements (RF & magnetic) misalignments have been considered.
- These first results give an indication on the required tolerances and machine operation scenario (ex. active element and trajectory feedback).
- Next steps will include RF phase and amplitude jitters, and Photocathode laser energy and pointing jitters.
- The space charge effects taken into account so far only on the nominal wps will be also considered.

Twiss parameters of the FODO cell for the L1 and L2 linac

C. Vaccarezza