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Note:  In  the  steady  state  case  acceleration  and  (De-­)Focusing  
are                    out  of  phase,  as  expected  from  the  formulae!⇡/2

Note:  Phase  is  flipped  due  to  the  sign  of  the  amplitude  slope
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Introduction

Using  short  Drive  Laser  Pulses  to  achieve  net  
Focusing  Forces  in  tailored  Dual  Grating  Dielectric  
Structures.

> In  simple  β-­matched  grating  structures  due  to  the  nature  of  the  laser  
induced  steady-­state  in-­channel  fields  the  per  period  forces  on  the  
particles  are  out  of  phase  and  hence  at  a  maximum  energy  gain  phase  
mostly  in  longitudinal  direction

>   Stable  acceleration  of  realistic  electron  beams  in  a  DLA  channel  
requires  the  presence  of  significant  net  transverse  forces  with  no,  
or  at  least  accelerating  longitudinal  force

> Here  we  simulate  and  study  the  effect  of  using  the  transient  
temporal  shape  of  short  Gaussian  drive  laser  pulses  in  order  to  
achieve  suitable  field  configurations  for  potentially  stable  
acceleration  of  relativistic   electrons  in  the  horizontal  plane  

Conclusion
> The  transverse  force  can  be  enhanced  by  using  transient  fields  
with  strong  slopes

> The  in-­channel  field  can  be  described  by  the  infinite  sum  of  spatial  harmonics

Enhancement  of  the  transverse  Force  Component  using  
Transient  Drive  Laser  Fields  (Analytical  Description)
> <Fy>  can  be  enhanced  by  having  a  significant  mismatch  between  βm and  βp,  for  example  by  

entering  the  structure  with  an  angle  in  the  x-­z  plane

>   Or:  Do  not  assume  Bz0 to  be  constant  (i.e.  steady  state)!

where it is assumed that the transverse motion during one period is negligible and hence
ds ! dx. Go into detail on what can already be seen from the final integrated equation.

Possibilities for significant Per-Period Transverse Force

• Significant mismatch between �

m

and �

p

• Virtual mismatch between �

m

and �

p

by going in with an angle in the x� z plane

Both of them basically implement the notion of exiting the period earlier, which leads to the
fact that forces are not cancelled out completely. Then there is a third option, which is based on
letting the B

(n)
z,0 depend on t, or subsequently x. This means B

(n)
z,0 ! B

(n)
z,0 (x) (in other words:

a non-constant envelope on the driving field), which needs to be taken into account in the
integration of the average per-period force. This then also leads to a situation where the forces
are not cancelled out anymore, because the particle experiences a different amplitude of the
fields at the beginning and the end of the period. Note that this already implies a requirement
on the slope of B(n)

z,0 (x), which needs to be significant enough to make a difference along the
short single period distance.

Time-dependent Fourier Weights – Transient Fields

It is reasonable to assume that the slope of the field during one single grating period is almost
linear and hence B

(n)
z,0 (x) = B
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z,0,0 + d

x

B
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z,0 · x, where d

x

! d/dx. With this we get for n 6= 0
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In the following we first concentrate on the matched case, meaning �
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= �

p

. In case of the
synchronous mode n = 1 this integral yields:
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This means that in order to get a significant enhancement (for example 50 %) compared to the
effect due to the instantious amplitude B

(1)
z,0,0 we need
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The important part of this inequality is the 1/�

x

factor. At period lengths ⇠ 10

�6 m this
implies a substantial required slope. The instantanious amplitude B

(1)
z,0,0 is usually < 3T. This

means that in order to achieve significant enhancement |d
x

B

(1)
z,0 | ⇠ �

�1
x

. It is interesting to note
that for all |n| > 1 only the slope contributes to the net-force:
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Assumptions:  
No  transverse  motion  during  one  period,  slope  of  the  Bz0 (envelope)  is  linear  over  one  period,  
phase  is  constant  over  one  period,  matched  case

> The  first  order  per-­period  transverse  force  depends  on  both  the  amplitude   and its  slope
(albeit  multiplied  with  the  drive  laser  wavelength)

> If  the  slope  is  significantly  steep…
…the  transverse  per-­period  force  can  be  enhanced
…the  sign  of  the  slope  makes  a  difference!

where it is assumed that the transverse motion during one period is negligible and hence
ds ! dx. Go into detail on what can already be seen from the final integrated equation.

Possibilities for significant Per-Period Transverse Force

• Significant mismatch between �

m

and �

p

• Virtual mismatch between �

m

and �

p

by going in with an angle in the x� z plane

Both of them basically implement the notion of exiting the period earlier, which leads to the
fact that forces are not cancelled out completely. Then there is a third option, which is based on
letting the B

(n)
z,0 depend on t, or subsequently x. This means B

(n)
z,0 ! B

(n)
z,0 (x) (in other words:

a non-constant envelope on the driving field), which needs to be taken into account in the
integration of the average per-period force. This then also leads to a situation where the forces
are not cancelled out anymore, because the particle experiences a different amplitude of the
fields at the beginning and the end of the period. Note that this already implies a requirement
on the slope of B(n)

z,0 (x), which needs to be significant enough to make a difference along the
short single period distance.

Time-dependent Fourier Weights – Transient Fields

It is reasonable to assume that the slope of the field during one single grating period is almost
linear and hence B

(n)
z,0 (x) = B

(n)
z,0,0 + d

x

B

(n)
z,0 · x, where d

x

! d/dx. With this we get for n 6= 0

hF
y

i(n)(y) ⇠
Z

�

x

0

(B

(n)
z,0,0 + d

x

B

(n)
z,0 · x) · cos( (n)

m

x+

˜

�

(n)
0 )dx. (34)

In the following we first concentrate on the matched case, meaning �

m

= �

p

. In case of the
synchronous mode n = 1 this integral yields:

hF
y

i(1)(y) ⇠
 
B

(1)
z,0,0 +

d
x

B

(1)
z,0

2

· �
x

!
· cos(˜�(1)

0 ). (35)

This means that in order to get a significant enhancement (for example 50 %) compared to the
effect due to the instantious amplitude B

(1)
z,0,0 we need

d
x

B

(1)
z,0

2

· �
x

� 1.5 · B(1)
z,0,0, (36)

which leads to

d
x

B

(1)
z,0 � 3 ·

B

(1)
z,0,0

�

x

. (37)

The important part of this inequality is the 1/�

x

factor. At period lengths ⇠ 10

�6 m this
implies a substantial required slope. The instantanious amplitude B

(1)
z,0,0 is usually < 3T. This

means that in order to achieve significant enhancement |d
x

B

(1)
z,0 | ⇠ �

�1
x

. It is interesting to note
that for all |n| > 1 only the slope contributes to the net-force:

hF
y

i(|n|>0)
(y) ⇠

d
x

B

(|n|>0)
z,0

2⇡(n� 1)

· �
x

· sin(˜�(|n|>0)
0 ). (38)

8

sc
al
e  
in
va
ria
nt
  a
cr
os
s  
th
e  
pl
ot
s

Phase

A
m
pl
itu
de

scale  changes  across  the  plots
Phase

A
m
pl
itu
de

Phase

A
m
pl
itu
de

LONG  DRIVE  PULSE SHORT  DRIVE  PULSE

> First  PIC  simulations  show  slightly  worse  results  compared  to  the  simple  
field  analysis,  but  more  sophisticated  structures  could   mitigate  this

Per-­Period  Force  (Analytical  Description)

Optimization  (VSim 7.2)
> Question:  Is  it  possible  – in  addition  to  the  enhancement  – to  alter  the  slope  and  also  the  
phase  relation  between  focusing  and  acceleration?

> Idea:  Introduce  resonance  to  the  system  à Leave  the  ideal  picture

�s
dn

dc

dn

dc

Notch  depth

Channel  width

Acceleration  and  focusing  can  be  
brought  in  phase  by  altering  the  
geometry!

Using short drive laser pulses to achieve net focusing forces in tailored dual

grating dielectric structures

F. Mayeta,b, R. Assmanna, U. Dordaa, W. Kuropkaa,b

aDeutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
bUniversität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany

Abstract

Laser-driven grating type DLA (Dielectric Laser Accelerator) structures have been shown to produce accel-
erating gradients on the order of GeV/m. In simple �-matched grating structures due to the nature of the
laser induced steady-state in-channel fields the per period forces on the particles are mostly in longitudinal
direction. Even though strong transverse magnetic and electric fields are present, the net focusing effect over
one period at maximum energy gain is negligible in the case of relativistic electrons. Stable acceleration of
realistic electron beams in a DLA channel however requires the presence of significant net transverse forces.
In this work we simulate and study the effect of using the transient temporal shape of short Gaussian drive
laser pulses in order to achieve suitable field configurations for potentially stable acceleration of relativistic
electrons in the horizontal plane. In order to achieve this, both the laser pulse and the grating geometry are
optimized. Simulations conducted with the Particle-In-Cell code VSim 7.2 are shown for both the transient
and steady state/long pulse case.

Keywords: dielectric laser accelerator, simulation, optimization, focusing

1. Introduction

The concept of dielectric laser accelerators (DLA)
has gained increasing attention in accelerator re-
search, because of the high achievable acceleration
gradients (⇠GeV/m) [? ]. This is due to the high
damage threshold of dielectrics at optical frequen-
cies. One of the structure types being studied is the
symetrically driven dual grating. A schematic of
this type of structure is shown in Fig. 1. If the struc-
ture periodicity �S and the drive laser wavelength
�L are adjusted according to the normalized veloc-
ity �p of the injected electrons, phase-synchronous
acceleration can be achieved. In this case the struc-
ture is then called �-matched. In simple �-matched
grating structures due to the nature of the laser
induced in-channel fields the steady-state per pe-
riod longitudinal force on the particle is ⇡/2 out of
phase with the transverse force (see Sec. 2). There-
fore at maximum energy gain phase no transverse

Email address: frank.mayet@desy.de (F. Mayet)
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Figure 1: Schematic of a dual grating DLA illuminated from
both sides with a linearly polarized laser field with wave-
length �L. �S is the period length, which is connected to the
laser wavelength by the synchronicity condition �S = �m�L,
where �m is the matched normalized particle velocity. The
electrons travel along x with normalized velocity �p.

forces are exerted on the particle. Stable acceler-
ation and transport of realistic electron beams in
a DLA channel however requires the presence of
significant net transverse forces. In this work we
simulate and study how a) the magnitude of the

Preprint submitted to Elsevier August 29, 2017

Numerical  Simulations  (VSim 7.2)
> Goal:  Verification  of  the  enhancement  effect
> Premise:  Dual  grating  (matched  to  50  MeV)  illuminated  from  

both  sides  with  a  50  fs  rms phase-­locked  temporal  Gaussian  with  
max  amplitude  of  0.5  GV/m  

> Figure  of  merit:  Equivalent  magnetic  focusing  gradient  (K.  Wootton,  et  al.)

G =
@?hF?i�

qec
!


T

m

�

> Scheme:   Calculate  the  transient  
field  for  one  cell/period

Calculate  the  per-­period  average  force  
on  a  single  beta-­matched  particle

Calculate  the  equivalent  magnetic  
focusing  gradient

Repeat  this  for  all  phases  along  the  
Gaussian  drive  pulse

> Results  – Comparison  with  steady  state  case  (same  max  amplitude)

> nth order  force  components  (dual  grating),  via  Lorentz-­Force

It is now helpful to introduce the particle to grating spatial phase  (n)
m

, which is defined as
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which in the �-matched case reduces to
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In order to simplify the equations it is furthermore helpful to define �(n)
m,±(y), the transverse

decay factor, which is defined for the dual grating case as
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and for the single grating case as
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Also the definition ˜

�

(n)
0 = �0 + �

(n) will be used in the following.
The force on a moving particle caused by the presence of an electromagnetic field is given by

the Lorentz Force
F

L

= q(E+ v ⇥B), (29)

where q is the particle’s charge and v its velocity. Therefore the non-zero force components are
in our case given by
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For the zero-order the y-component of the E-field is zero and hence we get
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The average per-period (or net-) force can now be calculated as
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parallel component of the electromagnetic field. From this it follows that

!
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= �c , k
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, (5)

where k0 is the laser wave number and �c is the particle velocity. This is at the same time the
synchronicity condition for grating accelerators:
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, � =

�

x

n�0
(6)

It is implied that for ultra-relativistic electrons the particles are phase synchronous with the
first mode if the grating period is approximately equal to the laser wavelength. In the following
calculations we use n = 1 as the synchronous mode and hence k
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= k

o
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into the
expressions for the electric field components yields
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Also noticing that after inserting k
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2

�

2 , it can be seen that the field falls off
exponentially in y. The particles are accelerated in evanescent field components, which is
rerquired by Lawson-Woodward. The real parts of the E field components can now be written
as
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where N  1. If N < 1 the field is approximated.

Lorentz boost into the rest frame of the particle

In order to study the electromagnetic field acting on the particle during traversal of the channel
a Lorentz Boost into the rest frame of the moving electron is necessary. Here it is assumed
that �

x

>> �

y

. Also in the first iteration acceleration of the particle is neglected and will be
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The average per-period (or net-) force can now be calculated as
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z

),

(30)

where v

x

= �

p

c. Inserting the expressions for E

x

and E

y

, as well as the newly introduced
definitions  (n)

m

, �(n)
m,±(y) and ˜

�

(n)
0 yields for n 6= 0

F

(n)
x

(x, y) = qc

s
n

2

�

2
m

� 1 · B(n)
z0

· sin( (n)
m

x+

˜

�

(n)
0 ) ·�(n)

m,+(y),

F

(n)
y

(x, y) = qc


n

�

m

� �

p

�
· B(n)

z0
· cos( (n)

m

x+

˜

�

(n)
0 ) ·�(n)

m,�(y).

(31)

For the zero-order the y-component of the E-field is zero and hence we get

F

(0)
x

(x, y) = �qc · B(0)
z,0 ·


cos

✓
k0y �

k0

�

p

x+ �0

◆
� cos

✓
k0(Lgap

� y)� k0

�

p

x+ �0

◆�
,

F

(0)
y

(x, y) = �q�

p

c · B(0)
z,0 ·


cos

✓
k0y �

k0

�

p

x+ �0

◆
� cos

✓
k0(Lgap

� y)� k0

�

p

x+ �0

◆�
.

(32)

The average per-period (or net-) force can now be calculated as

hF
x,y

i(n)(y) = 1

�

x

Z
�

x

0

F

(n)
x,y

(x, y)dx (33)
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where it is assumed that the transverse motion during one period is negligible and hence
ds ! dx. Go into detail on what can already be seen from the final integrated equation.

Possibilities for significant Per-Period Transverse Force

• Significant mismatch between �

m

and �

p

• Virtual mismatch between �

m

and �

p

by going in with an angle in the x� z plane

Both of them basically implement the notion of exiting the period earlier, which leads to the
fact that forces are not cancelled out completely. Then there is a third option, which is based on
letting the B

(n)
z,0 depend on t, or subsequently x. This means B

(n)
z,0 ! B

(n)
z,0 (x) (in other words:

a non-constant envelope on the driving field), which needs to be taken into account in the
integration of the average per-period force. This then also leads to a situation where the forces
are not cancelled out anymore, because the particle experiences a different amplitude of the
fields at the beginning and the end of the period. Note that this already implies a requirement
on the slope of B(n)

z,0 (x), which needs to be significant enough to make a difference along the
short single period distance.

Time-dependent Fourier Weights – Transient Fields

It is reasonable to assume that the slope of the field during one single grating period is almost
linear and hence B

(n)
z,0 (x) = B

(n)
z,0,0 + d

x

B

(n)
z,0 · x, where d

x

! d/dx. With this we get for n 6= 0

hF
y

i(n)(y) ⇠
Z

�

x

0

(B

(n)
z,0,0 + d

x

B

(n)
z,0 · x) · cos( (n)

m

x+

˜

�

(n)
0 )dx. (34)

In the following we first concentrate on the matched case, meaning �

m

= �

p

. In case of the
synchronous mode n = 1 this integral yields:

hF
y

i(1)(y) ⇠
 
B

(1)
z,0,0 +

d
x

B

(1)
z,0

2

· �
x

!
· cos(˜�(1)

0 ). (35)

This means that in order to get a significant enhancement (for example 50 %) compared to the
effect due to the instantious amplitude B

(1)
z,0,0 we need

d
x

B

(1)
z,0

2

· �
x

� 1.5 · B(1)
z,0,0, (36)

which leads to

d
x

B

(1)
z,0 � 3 ·

B

(1)
z,0,0

�

x

. (37)

The important part of this inequality is the 1/�

x

factor. At period lengths ⇠ 10

�6 m this
implies a substantial required slope. The instantanious amplitude B

(1)
z,0,0 is usually < 3T. This

means that in order to achieve significant enhancement |d
x

B

(1)
z,0 | ⇠ �

�1
x

. It is interesting to note
that for all |n| > 1 only the slope contributes to the net-force:

hF
y

i(|n|>0)
(y) ⇠

d
x

B

(|n|>0)
z,0

2⇡(n� 1)

· �
x

· sin(˜�(|n|>0)
0 ). (38)
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where it is assumed that the transverse motion during one period is negligible and hence
ds ! dx. Go into detail on what can already be seen from the final integrated equation.

Possibilities for significant Per-Period Transverse Force

• Significant mismatch between �

m

and �

p

• Virtual mismatch between �

m

and �

p

by going in with an angle in the x� z plane

Both of them basically implement the notion of exiting the period earlier, which leads to the
fact that forces are not cancelled out completely. Then there is a third option, which is based on
letting the B

(n)
z,0 depend on t, or subsequently x. This means B

(n)
z,0 ! B

(n)
z,0 (x) (in other words:

a non-constant envelope on the driving field), which needs to be taken into account in the
integration of the average per-period force. This then also leads to a situation where the forces
are not cancelled out anymore, because the particle experiences a different amplitude of the
fields at the beginning and the end of the period. Note that this already implies a requirement
on the slope of B(n)

z,0 (x), which needs to be significant enough to make a difference along the
short single period distance.

Time-dependent Fourier Weights – Transient Fields

It is reasonable to assume that the slope of the field during one single grating period is almost
linear and hence B

(n)
z,0 (x) = B

(n)
z,0,0 + d

x

B

(n)
z,0 · x, where d

x

! d/dx. With this we get for n 6= 0

hF
y

i(n)(y) ⇠
Z

�

x

0

(B

(n)
z,0,0 + d

x

B

(n)
z,0 · x) · cos( (n)

m

x+

˜

�

(n)
0 )dx. (34)

In the following we first concentrate on the matched case, meaning �

m

= �

p

. In case of the
synchronous mode n = 1 this integral yields:

hF
y

i(1)(y) ⇠
 
B

(1)
z,0,0 +

d
x

B

(1)
z,0

2

· �
x

!
· cos(˜�(1)

0 ). (35)

This means that in order to get a significant enhancement (for example 50 %) compared to the
effect due to the instantious amplitude B

(1)
z,0,0 we need

d
x

B

(1)
z,0

2

· �
x

� 1.5 · B(1)
z,0,0, (36)

which leads to

d
x

B

(1)
z,0 � 3 ·

B

(1)
z,0,0

�

x

. (37)

The important part of this inequality is the 1/�

x

factor. At period lengths ⇠ 10

�6 m this
implies a substantial required slope. The instantanious amplitude B

(1)
z,0,0 is usually < 3T. This

means that in order to achieve significant enhancement |d
x

B

(1)
z,0 | ⇠ �

�1
x

. It is interesting to note
that for all |n| > 1 only the slope contributes to the net-force:

hF
y

i(|n|>0)
(y) ⇠

d
x

B

(|n|>0)
z,0

2⇡(n� 1)

· �
x

· sin(˜�(|n|>0)
0 ). (38)
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matched  n.  velocity

actual  n.  velocity

Lgap channel  gap  width

> nth order  per-­period  force

It is now helpful to introduce the particle to grating spatial phase  (n)
m

, which is defined as

 

(n)
m

= k0

✓
n

�

m

� 1

�

p

◆
, (25)

which in the �-matched case reduces to

 

(n)
=

k0

�

m

(n� 1). (26)

In order to simplify the equations it is furthermore helpful to define �(n)
m,±(y), the transverse

decay factor, which is defined for the dual grating case as

�

(n)
m,±(y) = e

��

(n)
m y ± e

��

(n)
m (Lgap�y) (27)

and for the single grating case as
�

(n)
m

(y) = e

��

(n)
m y

. (28)

Also the definition ˜

�

(n)
0 = �0 + �

(n) will be used in the following.
The force on a moving particle caused by the presence of an electromagnetic field is given by

the Lorentz Force
F

L

= q(E+ v ⇥B), (29)

where q is the particle’s charge and v its velocity. Therefore the non-zero force components are
in our case given by

F

x

= qE

x

,

F

y

= q(E

y

� v

x

B

z

),

(30)

where v

x

= �

p

c. Inserting the expressions for E

x

and E

y

, as well as the newly introduced
definitions  (n)

m

, �(n)
m,±(y) and ˜

�

(n)
0 yields for n 6= 0

F

(n)
x

(x, y) = qc

s
n

2

�

2
m

� 1 · B(n)
z0

· sin( (n)
m

x+

˜

�

(n)
0 ) ·�(n)

m,+(y),

F

(n)
y

(x, y) = qc


n

�

m

� �

p

�
· B(n)

z0
· cos( (n)

m

x+

˜

�

(n)
0 ) ·�(n)

m,�(y).

(31)

For the zero-order the y-component of the E-field is zero and hence we get

F

(0)
x

(x, y) = �qc · B(0)
z,0 ·


cos

✓
k0y �

k0

�

p

x+ �0

◆
� cos

✓
k0(Lgap

� y)� k0

�

p

x+ �0

◆�
,

F

(0)
y

(x, y) = �q�

p

c · B(0)
z,0 ·


cos

✓
k0y �

k0

�

p

x+ �0

◆
� cos

✓
k0(Lgap

� y)� k0

�

p

x+ �0

◆�
.

(32)

The average per-period (or net-) force can now be calculated as

hF
x,y

i(n)(y) = 1

�

x

Z
�

x

0

F

(n)
x,y

(x, y)dx (33)
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> The  longitudinal  and  transverse  force  components  are  out  of  
phase  in  the  ideal  steady  state  case!  à Resonant  defocusing

size  of size  of :  Decelerating  Force:  Accelerating  Force

Phase-­Dependent  Focusing  – DLA  Transport  Line
> Problem:  In  DLA-­based  focusing  systems  the  focusing  strength  depends  on  the  laser  
to  electron  phase

> Along  a  phase  range  of  π/2  the  equivalent  k  value  of  a  usual  DLA  can  vary  from  
0  to  ~106 à Strong  effect  on  the  phase  advance  of  individual  slices  along  the  beam!

> Study:  Classical  transport  matrix  approach  with  phase  dep.  k  value

> DLA  FODO  line:  dBmax =  2.0  MT/m,   10  
cells/element,  10  elements/drift,  
50  MeV  electrons,  1  fs  uniform

> Results:  After  a  long  distance,  the  
x-­phi  phase  space  is  strongly  disturbed!

> Outlook:  What  are  the  characteristic  
thresholds  of  a  DLA-­based  transport  line?

This  work  was  supported  by  the  Gordon  and  Betty  Moore  Foundation  under  grant  GBMF4744  (Accelerator  on  a  Chip).

> The  geometry  of  the  grating  can  influence  the  phase  relation  between  
acceleration  and  (de-­)focusing

> More  elaborate  PIC  simulations  must  show  how  nonlinearities  in  the  fields  
affect  the  beam  quality  in  multi-­period  structures!  
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