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Introduction Per-Period Force (Analytical Description)
| | > The in-channel field can be described by the infinite sum of spatial harmonics
> In simple 3-matched grating structures due to the nature of the laser . h order f s (dual arat ol o F
induced steady-state in-channel fields the per period forces on the n™ order force components (dual grating), via Lorentz-Force
particles are out of phase and hence at a maximum energy gain phase .
mostly in longitudinal direction Fi(z,y) = qc | ;’—2 —1-BW - sin(W0x + ¢6Y) - AL, (v), AL, (y) = e 4 ¢ (L)
(n) n (n) () o Zmy . AW v = ko (gi - %)
>  Stable acceleration of realistic electron beams in a DLA channel £ (x,y) = qc [—m - /3p] By eos(Wr + ) - An - (y). . i
requires the presence of significant net transverse forces with no, o =Ry
or at least accelerating longitudinal force > nth order per-period force B, matched n. veloity
5}3 actual n. velocity
> Here we simulate and study the effect of using the transient ()™ (y) = ks / . E) (2, y)dx Lgap channel gap width
temporal shape of short Gaussian drive laser pulses in order to Az Jo
achieve suitable field configurations for potentially stable .
: . : : > The longitudinal and transverse force components are out of
acceleration of relativistic electrons in the horizontal plane : : :
phase in the ideal steady state case! > Resonant defocusing

Enhancement of the transverse Force Component using | Numerical Simulations (VSim 7.2) m‘-*
Transient Drive Laser Fields (Analytical Description) - Goal: Verification of the enhancement effect G TITTITE
> Premise: Dual grating (matched to 50 MeV) illuminated from pE— L.

> <F,> can be enhanced by having a significant mismatch between 3., and [3,, for example by

: . . both sides with a 50 fs rms phase-locked temporal Gaussian with
entering the structure with an angle in the x-z plane

max amplitude of 0.5 GV/m

> Or: Do not assume B,, to be constant (i.e. steady state)! > Figure of merit: Equivalent magnetic focusing gradient (K. Wootton, et al.)
) z0 G .

Calculate the per-period average force

Assumptions: S
No transverse motion during one period, slope of the B, (envelope) is linear over one period,
phase is constant over one period, matched case

Scheme: — on a single beta-matched particle

Calculate the equivalent magnetic

v
(F,)"™(y) ~/ (BN + A, BYY - ) - cos(T Wz + ¢ )dur. G = L{FL) > { }
0 (JeC m Gaussian drive pulse

d,BY _
s (F)0) ~ [ Bl + =5 A | - cos(d)").

> Results — Comparison with steady state case (same max amplitude)
> The first order per-period transverse force depends on both the amplitude and its slope _
: . . . 50 fs rms Gaussian Pulse Steady State
(albeit multiplied with the drive laser wavelength) 2 040 2 090
E 0.15| E 0.15/
> If the slope is significantly steep... 2 0.10 i 2 010
...the transverse per-period force can be enhanced s 005 TTTTTt ot © 005 RRbRERRERRRELERERRRAREARRARLARRARRARLARRALIARLARRREE NSRS
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...the sign of the slope makes a difference! S ¥ S Tt Tt T T T T T e
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Optimization (VSim 7.2) Phase-Dependent Focusing — DLA Transport Line
> Question: I_s it possible —in aFIdltlon to the enh_ancement — to alter the slope and also the >~ Problem: In DLA-based focusing systems the focusing strength depends on the laser
phase relation between focusing and acceleration? to electron phase
; Idea: Introduce resonance to the system = Leave the ideal picture > Along a phase range of /2 the equivalent k value of a usual DLA can vary from
E o ®: Accelerating Force  size of @: Decelerating Force 0 to ~10° - Strong effect on the phase advance of individual slices along the beam!
5 1) > Study: Classical transport matrix approach with phase dep. k value
2 o d, Notch depth
% Ar d. Channel width 1.0
E | | | | | | | _ > DLAFODO line: dB,,,, =2.0 MT/m, 10
0 0 o 20 S0 40 %0 e 70 ‘0-81&: cells/element, 10 elements/drift,
§ ; size ofI .:Accellerating Il'orce | size (I)f ®: Delceleratiné Force -0.6% 50 MeV eleCtronS’ 1 fS _uniform
= 1) g > Results: After a long distance, the
3 Acceleration and focusing can be 0.43 X-phi phase space is strongly disturbed!
© 0 . . <
g brought in phase by altering the @
A geometry! ?“£ > Outlook: What are the characteristic
A a4 o & o -6 . — 0 - oy 0.0 thresholds of a DLA-based transport line?
Time (fs) Phase (rad)

Conclusion > First PIC simulations show slightly worse results compared to the simple

> The transverse force can be enhanced by using transient fields field analysis, but more sophisticated structures could mitigate this

with strong slopes

> More elaborate PIC simulations must show how nonlinearities in the fields

> The geometry of the grating can influence the phase relation between >iH o L
affect the beam quality in multi-period structures!

acceleration and (de-)focusing

This work was supported by the Gordon and Betty Moore Foundation under grant GBMF4744 (Accelerator on a Chip).

GORDON AND BETTY

UH .
ﬁ I-‘IEAlggdol-(I:(I)Al}TgN 'ﬂi Universitdit Hamburg ﬁ MOORE : e e SI N BA D

DER FORSCHUNG | DER LEHRE | DER BILDUNG HCHIP FOUNDATION




