EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS **Laser-plasma injectors in the frame of EuPRAXIA** Srd EAAC, Elba island, 25-29 September 2017 T. L. Audet, P. Lee, G. Maynard and B. Cros LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

- Design study for an accelerator facility providing 5 GeV electron bunches to two user areas
 - Free electron laser science area
 - High energy physics detector science area

- Design study for an accelerator facility providing 5 GeV electron bunches to two user areas
 - Free electron laser science area
 - High energy physics detector science area
- Configurations studied :
 - Laser plasma injector \rightarrow Laser plasma accelerator stage
 - Radio-frequency injector \rightarrow Laser plasma accelerator stage

- Design study for an accelerator facility providing 5 GeV electron bunches to two user areas
 - Free electron laser science area
 - High energy physics detector science area
- Configurations studied :
 - Laser plasma injector \rightarrow Laser plasma accelerator stage
 - Radio-frequency injector \rightarrow Laser plasma accelerator stage

- Design study for an accelerator facility providing 5 GeV electron bunches to two user areas
 - Free electron laser science area
 - High energy physics detector science area
- Configurations studied :
 - Laser plasma injector \rightarrow Laser plasma accelerator stage
 - Radio-frequency injector \rightarrow Laser plasma accelerator stage

Quantity	Target value
Energy	150 MeV [100 – 200 MeV]
Charge	100 pC [30 – 100 pC]
Bunch length	5 fs (rms) [3 – 20 fs]
Repetition rate	10 Hz [1 – 100 Hz]
Total energy spread	5 % (rms) [1 – 5 %]
Transverse normalized emittance	1 mm.mrad
Transverse beam size	0.58 μm (rms) [0.5 – 0.71 μm]
Transverse divergence	5.8 mrad (rms) [5 – 7.1 mrad]

Quantity	Target value
Energy	150 MeV [100 – 200 MeV]
Charge	100 pC [30 – 100 pC]
Bunch length	5 fs (rms) [3 – 20 fs]
Repetition rate	10 Hz [1 – 100 Hz]
Total energy spread	5 % (rms) [1 – 5 %]
Transverse normalized emittance	1 mm.mrad
Transverse beam size	0.58 μm (rms) [0.5 – 0.71 μm]
Transverse divergence	5.8 mrad (rms) [5 – 7.1 mrad]

These target properties are given at the entrance of the second stage
 → Impact of transport on charge, bunch length and spatial properties

- We compared experimental results with electron energy in the range of EuPRAXIA
- We focused on properties that will not be changed or improved during transport :
 - \rightarrow Energy
 - \rightarrow Charge
 - \rightarrow Energy spread
- We looked at four injection schemes :
 - \rightarrow SI : self-injection
 - \rightarrow CPI : colliding pulse injection
 - \rightarrow DGI : density gradient injection
 - \rightarrow III : ionization-induced injection

150 MeV Injector – Targeted properties

Quantity	Target value	Published results
Energy	150 MeV [100 – 200 MeV]	✓
Charge	100 pC [30 – 100 pC]	*
Bunch length	5 fs (rms) [3 – 20 fs]	✓ ×
Repetition rate	10 Hz [1 – 100 Hz]	✓
Total energy spread	5 % (rms) [1 – 5 %]	✓
Transverse normalized emittance	1 mm.mrad	×
Transverse beam size	0.58 μm (rms) [0.5 – 0.71 μm]	 ✓ ×
Transverse divergence	5.8 mrad (rms) [5 – 7.1 mrad]	✓

Critical issue :

 High charge (100 pC) combined with low energy spread (5 % rms) and low emittance (1mm.mrad)

Published results only partially match EuPRAXIA injector parameters
 → Optimization investigated through simulations
 P. Lee PRSTAB (2016)

P. Lee PRSTAB (to be submitted)

- Ionization induced injection in a gas cell with tuned density profile
- Density transition injection in a gas jet
- Self-truncated inonization induced injection in gas jet ?
- ... in quasi-linear regime

- Published experimental results are getting closer to EuPRAXIA target parameters :
 - Energy, energy spread and divergence are already achievable
 - Charge has to be increased
 - Emittance has to be reduced

- Published experimental results are getting closer to EuPRAXIA target parameters :
 - Energy, energy spread and divergence are already achievable
 - Charge has to be increased Managing space charge
 - Emittance has to be reduced \int effects

- Published experimental results are getting closer to EuPRAXIA target parameters :
 - Energy, energy spread and divergence are already achievable
 - Charge has to be increased [] Managing space charge
 - Emittance has to be reduced \int effects
- Stability (pointing, charge, energy ...) is mandatory for injection into a second plasma stage → more results on stability are needed

- Published experimental results are getting closer to EuPRAXIA target parameters :
 - Energy, energy spread and divergence are already achievable
 - Charge has to be increased] Managing space charge
 - Emittance has to be reduced \int effects
- Stability (pointing, charge, energy ...) is mandatory for injection into a second plasma stage → more results on stability are needed
- Transport will have an impact on the stability
 - Up to a factor ~10 in size and pointing stability \rightarrow A. Maitrallain (to be published)
 - A stable injector producing wider energy distribution but large pC/MeV could also be an option

Thank you !

T.L. Audet – EuPRAXIA laser wakefield injectors. EAAC 2017