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The laser: 50 years of discoveries
Testimony by Charles Townes

“The history of the laser is a perfect example of the 

impact of basic research, not only on science, 

but also on economy – a spectacular 

impact, often completely 

unexpected.”
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Petawatt achievements and discoveries:

• 1.3-PW = 1,300,000,000,000,000 Watts 
• ~1021 W/cm2

• 10-100-MeV electron beams
• Laser made proton beams
• Hard x-rays and gamma-rays
• Photo-fission

1996:		The	First	Petawatt	Laser,	invented	at	LLNL:	600	J,	>1	PW	
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20	years	later:	

HAPLS	laser	runs	200,000	times	faster	than	the	original	1996	Petawatt
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Worldwide	scientific	laser	facilities	mostly	meet	the	demands	

for	proof	of	principle	experiments
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Commercial	and	advanced	scientific	short	pulse		laser	

applications	require	high	repetition	rate
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Rod amplifiers THIN DISK: “active 
mirror”

multislab-face-cooling

Heat	can	be	extracted	through	the	“edge”	or	the	“face”

• Conductive/convective cooling 

with liquid (National 

Energetics) or Helium gas 

(LLNL, RAL)

• Stress parallel to laser beam

• High energy storage

• Conductive cooling through 

back side

• Stress parallel to laser beam

• Low energy storage

• Conductive cooling through 

edges

• Stress orthogonal to laser 

beam

• High energy storage

Pump lightPump light

Laser emission

Laser 
emission
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Amplifier
slabs

Helium

Pump

Pump

Gas-cooled	amplifier	

schematic

HAPLS	production	

Amplifier	Assembly

LLNL	pioneered	gas-cooling	of	high	energy	laser	amplifiers	in	the	

eighties:	slabs	are	cooled	by	rapidly	flowing	He-gas

• Face	cooled	Nd:Glass	slabs

• Room	temperature	Helium	gas	coolant	

• Gas	acceleration	vanes	Mach	0.1

• Cooled	ASE	Edge	claddings
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Ti:Sapphire

Two	architectures	for	high	energy	DPSSL	recently	demonstrated:

the	LLNL’s	“HAPLS”,	and	Rutherford’s	“DiPOLE100”

Delivers

100J, 10ns, 10Hz

Delivers 200J, 20ns, 10Hz 

and 30J, 1PW, 30fs, 10 Hz

YAG compound ceramics

Nd:Glass
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Diode	pumping	has	a	significant	impact	on	system	efficiencies

Ti:Sa PW Efficiency
WP   0.4% 2.6%

EO 0.6% 3.8%
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Scale	a	flashlamp-pumped	Ti:Sa laser	to	TeV-Collider	size	and	

you	need	a	nuclear	power	plant	in	your	backyard.

PETRA III
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HAPLS	is	designed	to	deliver	Petawatt	peak	power	laser	pulses	

at	energy	30J	and	10Hz	repetition	rate	=	300	Watt

Requirement Specification
Energy 0.8 µm ≥30 J

Pulse length ≤30 fs

Peak power ≥1 PW

Pre-pulse power contrast ≤10-9 
≤ c ≤10-11

Energy stability 0.6% rms

Technology DPSSL pumped Ti:sapphire CPA

Repetition rate 10 Hz

Electrical consumption <150 kW
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HAPLS	today….at	ELI	Beamlines	ready	for	installation
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Today,	the	HAPLS	delivers	16J	of	broadband	laser	pulses	at	3.3	

Hz;	full	aperture	is	pulse	duration	28fs	

µ = 28.1 fs

σ = 1.4fs = 5.0%
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HAPLS	relies	on	a	diode	pumped,	indirect	chirped	pulse	

amplification	architecture	(”diode	pumped	laser	pumped	laser”
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• The HAPLS Pump laser delivers 1.2 MJ/hour today

• The HAPLS Petawatt laser system delivers 190 kJ/hour

Ramped to its full performance at ELI, 

HAPLS will deliver 1MJ/hr of Petawatt, 30fs pulses
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The	average	power	scalability	of	energetic	Ti:Sapphire (and	

OPCPA)	laser	is	constrained	by	the	availability	of	pump	lasers

Pump trans (~20W)

ASE to Cladding 
(~150W)

Output beam (~400W)

Other losses (~80W)

Quantum defect 
heating(~350W)

ASE and quantum defect 
heat extracted by gas flow

Incident Pump Light  
(~1kW absorbed) 
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Indirect	CPA:	DPSSL-pumped	 Ti:S
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2.6%1-J

Indirect	CPA:	Lamp-pumped	SSL	pumped	Ti:S
0.4%

Efficiency
WP EO

3.8%

0.6%

The short gain lifetime and the large quantum defect make Ti:Sapphire drives the 
cost of the pump laser and makes it an unattractive HAP laser medium
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The	dual	diode-pumped	surface-cooled	multislab amplifier	in	a	

4-pass	polarization	switched	architecture	is	a	template	for	high	

average	power	high	peak-power	systems
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The	HAPLS	pump	laser	could	be	converted	to	a	150J,	150fs,	10Hz	

secondary	source	driver:	SHARC
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§ SHARC	is	a	low-risk	high-TRL	extension	of	HAPLS	pump	laser	technology

§ 150J,	150fs,	10Hz,	90/110	dB	temporal	contrast

§ 10-Hz	PW	(150J/150fs)	at	greater	efficiency	than	HAPLS	(~5%	Wall	plug	efficiency)

§ HAPLS	diode-pumped	Nd:Glass pump	laser	with	broadband	mixed-glass	frontend	and	LLE’s	

Short	Pulse	OPA	seed	technology

§ High	efficiency,	actively	cooled	MLD-grating	laser	pulse	compressor

§ Application	space	targets	proton-/neutron-particle	beam	and	high	brightness	x-ray	

generation

Based on HAPLS pump laser and NIF ARC technology, LLNL has 
developed a concept for a Scalable High-average-power Advance 
Radiographic Capability (SHARC)



239.2017 – LLNL- C.Haefner-EACC 2017 Italy

Based on HAPLS pump laser and NIF ARC technology, LLNL has 
developed a concept for a Scalable High-average-power Advance 
Radiographic Capability (SHARC)

OutputWaste

Indirect CPA: DPSSL-pumped Ti:S 2.6%

Efficiency

1-J

Indirect CPA: Lamp-pumped SSL pumped Ti:S

1-J

0.4%

WP EO

3.8%

0.6%

Direct CPA: SHARC
5.0% 7.2%

1-J
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HAPLS-100 and SHARC could get us to kW to ~10kW 
of average power (at Petawatt peak power).

But we need 100s of kW for TeV Collider stage.
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High-Power	Single-Aperture Laser	Beamline	Performances

Pushing the frontiers of high-power applications and high-intensity science 

requires next-generation high repetition-rate high-energy solid state lasers.
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If	we	normalize	this	plot	by	the	beam	area	in	the	final	amplifier,	the	axes	become	
proportional	to	laser	media	parameters:	photon	energy,	gain	cross-section,	gain	

lifetime,	gain	bandwidth	(ie transform	limited	pulse	duration).

Transitioning	from	Application	Space	to	Laser	Media	Space
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Gain Bandwidth

Power	Scaling	for	Energy-Storage	Laser	Media

(simple	scaling	w/o	architecture	considerations)

[1] M. D. Perry and G. A. Mourou, Science 264, 917 (1994).
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Stored	energy	can	be	extracted	from	laser	medium	with	a	high	

fluence single	pulse,	or	multiple	low-fluence pulses	within	the	

radiative	lifetime

⌧rad ⌧rad

Multi-Pulse
Extraction

Single-Pulse
Extraction

1

5

1

5

Multi-pulse extraction reduces the effective fluence in the laser system and therefore 

moves the operating point into a manageable regime for low cross-section materials
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Power	Scaling	for	Energy-Storage	Laser	Media:	

Damage	Limited	Fluence and	Multi-Pulse	Extraction
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High-Power	Single-Aperture	Laser	Beamline	Performances
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• Extension	of	HAPLS	diode-pumped	gas-cooled	architecture

• Tm:YLF laser	media	(1.9um)
• Commercially	available	in	sizes	for	300-kW
• superior	thermal	wave	front	(-dn/dT	vs	thermal	expansion)
• anisotropic	media	- de-polarization	not	an	issue
• Pulse	duration	40fs	<	t	<	100fs	TL
• Two-for-one	pumping	by	self-quenching	in	Tm	enables	low	QD

pump	scheme

• True	CW	pumped:		
• Tm	has	long	lifetime	which	when	combined	with	the	

desired	pulse	repetition	rates	enables	multi-pulse	
extraction	and	continuous	pumping

• Quasi-4-level	losses	are	distributed	among	hundreds	
of	pulses	minimizing	this	effect

• Efficient	extraction	at	low	fluence	per	pulse,	low	B,	higher	efficiency
• ~40x	lower	diode	cost	compared	to	HAPLS;	lower	electronics	cost	due	to	simplicity	over	QCW
• Efficient	high-power	pump	diodes	consistent	with	Tm	pumping	already	on	the	market

• Il2 advantage	with	1.9um	for	accelerator	applications,	“eyesafe”	wavelength	regime

BAT:	Big	Aperture	Thulium	Laser.	BAT	is	a	high	rep-rate	PW-class	

architecture	which	scales	to	300-kW	average	power

Tm:YLF crystal recently procured by LLNL:

Diameter ~10cm

We have purchased 300kW-equivalent size Tm:YLF boules, produced our first 
amplifier slabs and characterizing the material further for its suitability
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Block	diagram	of	BAT

Oscillator 3J @ 10kHz
miniBAT amplifier

InnoslabStretcher

300 kW
Compressor

Pulse shaping 
and contrast 
enhancement

38J @ 10kHz
BAT amplifier

• Beam transport
• Target

BAT 
Output Sensor

Integrated Controls

~750kW cw-
laser diode 

arrays

Diode Arrays

Front End 3kW (300mJ @ 10kHz)
Diode Arrays

~$100k

Multipass
Pre-amp
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BAT	emits	300kW	from	a	single	aperture

7cm

Characteristic Value

Gain medium Tm:YLF

Architecture Multi-pass, multi-pulse 

gas cooled

Output energy 30 J

Repetition rate 10,000 Hz

Average 

output power

300 kW

Wavelength ~ 1.9 µm

Output fluence 0.7 J/cm2

B integral 

(Poweramp)

< 0.1 radians (!!!)
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BAT	laser	diodes	are	always	on!!!

HAPLS BAT

Laser Average Power (kW) 0.3 300

# of arrays 4 4

Array Peak Power (kW) 800 188

Array Average Power (kW) 2.4 188

Emitting area (W x H cm2) 5.6 x 13.4 6.6 x 28.4

Duty Cycle (%) 0.3 100

Relative Cost / array 1 1.9

Diodes for a 300 kW class BAT system are only 1.9X the cost of the HAPLS arrays 

2x

808 nm pump band matches Nd:YAG pump 
wavelengths

Commercial pump cw-diode arrays are 
available (150W/bar) from multiple vendors
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High-Power	Single-Aperture	Laser	Beamline	Performances

Pushing the frontiers of high-power applications and high-intensity science requires 

next-generation high repetition-rate high-energy solid state lasers.

Operational

In Build

Conceptual

De-activated

Ti:Sa

Nd:g

Yb:X

OPA

Gas

Laser 
Media

Er:X

Cr:X

Tm:X



399.2017 – LLNL- C.Haefner-EACC 2017 Italy

10-9

10-10 10-11

10-8

High-Power	Single-Aperture	Laser	Beamline	Performances

Pushing the frontiers of high-power applications and high-intensity science requires 

next-generation high repetition-rate high-energy solid state lasers.
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§ LLNL	is	exploring	avenues	to	break	the	kW	barrier	for	high	peak	power	lasers	to	drive	high	flux	x-
ray,	ɣ-ray,	and	particle	beams

§ Performed	extensive	architecture	and	material	study.	Crucially	important	for	high	average	
power	lasers	is	high	wall-plug	efficiency:	reduce	heat	(once	heat	is	in	it’s	expensive	and	hard	to	
pull	it	out)	and	heat	effects	(heating-cooling	gradients	cause	beam	deterioration,	break	stuff	and	
limit	average	power)
— Direct	CPA	increases	dramatically	the	efficiency;	beam	quality	and	temporal	pulse	contrast	

require	additional	attention
— Long	radiative	lifetime	gain	media	become	available	through	multi-pulse	extraction	at	safe	

energy	extraction	fluencies
— CW-pumping	reduces	massively	the	capital	cost	for	high	average	power	DPSSL

Summary

Diode pumping has a significant impact on system efficiencies, but direct CPA 
lasers with multi-pulse extraction and cw- pumping will have even greater impact 

on efficiency and system feasibility for laser-plasma accelerator applications

OutputWaste

Direct CPA: BAT

Indirect CPA: DPSSL-pumped Ti:S
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The	repetition	rate	has	a	significant	effect	on	the	extraction	and	

system	efficiencies,	depending	on	laser	media
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LLNL 3.3 MW solar farm can power ~2x BAT

1 mile
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• We	have	developed	a	conceptual	design	for	a	single-aperture,	300	kW	Thulium:YLF
Petawatt-class	laser	“BAT” consistent	with	requirements	for	laser	wakefield
accelerators

• The	underlying	technology	is	a	modest	extension	of	established	LLNL	gas-cooling	and	
rep	rated	Petawatt	technologies

• BAT	makes	use	of	a	highly	simplified	laser	architecture,	multi-pulse	extraction	of	CW-
diode	pumped	Tm:YLF and	thus	providing	good	wall-plug-efficiency

• We	have	developed	a	list	of	system	TRLs	and	challenges	that	will	inform	the	strategic	
plan	for	R&D	and	RTP	efforts

Summary

System Type TRL
Estimate

Integration 
Challenge

delivery 
horizon E (J) t (fs) Pav (kW) Ppeak(PW)

HAPLS DPSSL+TiS 7 Low today 30 <30 0.3 1

SHARC DP CPA Nd:Glass 6 Low 3yrs 150 150 1.5 1

Mini-BAT DP CPA Tm:YLF 3-4 Medium 3-5yrs 3
40 or 

100
3 .075

BAT DP CPA Tm:YLF 3 Medium 5-7yrs 30
40 or 

100
300 .75
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