Imperial College ondon

Enhanced Betatron Radiation from a Laser Wakefield Accelerator in a Long Focal Length Geometry

Jonathan Wood Imperial College London jcw08@imperial.ac.uk

> EAAC 2017 26/09/2017

Acknowledgements

J. M. Cole¹, N. C. Lopes^{1,2}, K. Poder¹, A. Sahai¹, S. Alatabi¹, P. Foster³,

Imperial College

London

- C. Kamperidis¹, O. Kononenko⁴, S. P. D. Mangles¹,
- C. A. J. Palmer⁴, D. Rusby³, G. Sarri⁵, D. R. Symes³,
- J. R. Warwick⁵ and Z. Najmudin¹.

¹ The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, UK.

² GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, U.L., Lisboa 1049-001, Portugal.

³ Central Laser Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.

⁴ DESY, Notkestraße 85, 22607 Hamburg, Germany.

⁵ Queens University Belfast, University Rd, Belfast BT7 1NN, UK.

Contents

- High Brightness X-ray Sources.
- Betatron Radiation from Laser Wakefield Accelerators.
- Greater than 10-fold increase in Betatron Brightness with long focal length driver.
- Explanation via PIC simulation.

Importance of X-ray Sources

Imaging: absorption and phase contrast.

 $\eta = 1 - \delta + i\beta$

 $\delta \gg \beta$ at high E If the x-rays are coherent you can do phasecontrast imaging (xPCI). Pick up gradients in δ , get edge enhancement.

Material structure at the atomic scale:

E.g. graphite: distance between planes d = 0.335 nm (3.7 keV) -> hard x-ray diffraction.

Atomic structure from 'ringing' in absorption spectrum near K-edge.

Imperial College

London

Enhanced Betatron Radiation from a LWFA in a Long Focal Length Geometry

Look at fast processes

Small source size means high res. lens-less imaging in compact geometry.

High flux- high SNR or high magnification Important for structural studies, less so for imaging.

Achievable with sources based on relativistic electron beams.

ESRF: $B = 10^{23} \cdot 10^{24}$ @ 10-20 keV LCLS: $B = 10^{31} \cdot 10^{34}$ @ 10 keV [1]

[1] http://photon-science.desy.de/research/studentsteaching/sr_and_fel_basics/fel_basics/tdr_spectral_characteristics/index_eng.html

[2] https://www.engelskagymnasiet.se/sites/engelskagymnasiet.se/files/esrf-01l.jpg

[3] http://web.stanford.edu/group/suncat/cgi-bin/suncat/sites/default/files/lcls_0.jpg

Enhanced Betatron Radiation from a LWFA in a Long Focal Length Geometry

JAI

Imperial College London

6/20

Why a Laser Based Source?

- High rep rate of conventional sources is not always required, especially for dynamic experiments e.g. HEDP.
- Laser pulse duration 10s fs (XFEL is 10s fs, synchrotron is 10s-100 ps).
- Large market: 47 synchrotron light sources worldwide, 3 current hard x-ray FEL's. 4 more being built.

Betatron Radiation = Plasma Wiggler Radiation

Focussing forces of bubble means it acts as a plasma wiggler for electrons.

Well collimated. Emission cone angle $~ hetapprox K/\gamma~$

K > 1 for betatron source: hard, broadband radiation.

Well approximated by on axis synchrotron spectrum [5]. Spectrum defined by critical energy $E_c = \frac{3\hbar}{4c}\gamma^2\omega_p^2r_\beta$

[4] CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=537945

[5] E. Esarey et. Al. Physical Review E, 65(5):056505, May 2002.

Enhanced Betatron Radiation from a LWFA in a Long Focal Length Geometr

High Brightness Betatron Experiments

Laser	a ₀	E _c / keV	No. photons	Brightness ph./s/mm²/ mrad²/0.1% BW	Source size (um)
Hercules [6]	4.7	8-21	5x10 ⁷	1x10 ²²	1
Gemini [7]	3.4	20-33	1.3x10 ⁹	~ 1x10 ²³	1.6
Texas Petawatt [8]	-	8-18	10 ⁸ -10 ⁹	Of order 10 ²² -10 ²³	-
Jupiter Laser Facility [9]	~3	15	5x10 ⁸	1x10 ²³	

Imperial College

London

Ideal way to improve brightness: increase number of photons/mrad². Consequences:

Improve single-shot image quality, probe matter via XANES/ EXAFS (require >10⁶ photons/eV for good stats [10]), Laue diffraction?

[6] S. Kneip et. al. Nature Physics 6(12):980-983,2010.

[8] X. Wang et. al. Nature Communcations 4:1988, 2013.

[10] F. Albert et al. Plasma Physics and Controlled Fusion 56(8):084015.

[7] J.M. Cole, J.C. Wood et. al. Scientific Reports 5:13244, 2015.
[9] Yan W. *et al.* PNAS 111(16):5825-5830, 2014.

London

How to Increase the Number of Betatron Photons

- Total emitted energy: $W_{tot} \propto N_e \,\, \gamma^{5/2} \,\, {r_{eta}}^2$
- Maximum electron energy: $\gamma \propto rac{1}{n_e}$
- Matched spot size for good laser guiding:

$$k_p w_0 \approx 2\sqrt{a_0} \implies w_0 \propto 1/\sqrt{n_e}$$

• Long focal lengths (big focal spots) allow us to be matched at lower density, increasing maximum energy gain.

How to Increase the Number of Betatron Photons

- Total emitted energy: $W_{tot} \propto N_e ~\gamma^{5/2} ~{r_eta}^2$
- Maximum electron energy:

$$\gamma \propto rac{1}{n_e}$$

Matched spot size for good laser guiding:

Typical electron energy at Gemini with f/20 focussing: 0.7 ± 0.1 GeV. In optimal conditions: $E \gtrsim 1$ GeV.

Imperial College

London

$$k_p w_0 \approx 2\sqrt{a_0} \implies w_0 \propto 1/\sqrt{n_e}$$

• Long focal lengths (big focal spots) allow us to be matched at lower density, increasing maximum energy gain.

Experiment Set-up

Electron and X-ray Results I

Performed scans at constant plasma density changing the length of the He plasma in the range 4-40 mm.

Imperial College

London

Betatron x-ray Images of Filter Array

Enhanced Betatron Radiation from a LWFA in a Long Focal Length Geometry

Electron and X-ray Results II

Injection of 2nd bunch with high charge/0.1%BW and large transverse momentum. Second injection correlates with a large increase in the number of x-rays being detected.

London

Electron Beam Energy Spectrum

Second bunch has up to 4x the charge/ unit bandwidth. Injection close to dephasing point of first bunch. Limited acceleration of second bunch: never beyond 800 MeV.

Betatron Spectral Characteristics

Enhanced Betatron Radiation from a LWFA in a Long Focal Length Geometr

Betatron Brightness

First injected bunch: high brightness driven by small source size.

With second bunch: relative reduction in brightness from rapid increase in source size. But we see a dramatic increase in the number of photons- good for applications!

London

Further Brightness Increase with Laser Energy

Increase in laser energy: 5.6 J to 11.3 J. $a_{0,max}$: 1.7 to 2.4 ~70% increase in brightness in high photon regime. Approx. 6x more photons.

Good for applications. 1.4x10⁶ photons per eV @ 6-8 keV. B. Kettle talk, few shot XANES spectra. J. Cole talk, high quality medically relevant imaging. Both in WG4 right now.

- First bunch injected very early- during wakefield formation. Second, high charge/ unit BW, bunch injected due to bubble expansion [11][12].
- Second bunch undergoes large oscillations (W $_{tot} \propto r_{\beta}{}^2).$
- Oscillations seem linked to bubble oscillation- explains coherent oscillation structure of some beams from the experiment.
 Aakash Sahai

[11] S. Kalmykov et al. Phys. Rev. Lett. 103(13):1-4, 2009.

[12] S. A. Yi et al., PPCF 19(3):014012, 2012.

- Dynamic injection and laser behaviour.
- Reproducible betatron x-ray spectrum.
- Excellent reproducibility for 300 shots.
- Mean: 18.0 keV. Standard Deviation: 1.6 keV.

30

London

Conclusions

- Long focal length wakefield experiment produced high brightness betatron beams in 2 regimes.
- First injection: few hundred nm source size.
- Second injection: high brightness and photon number.
 > 10⁶ photons/eV,
 > 10²⁴ photons/s/mm²/mrad²/0.1%BW
- Results backed up by PIC simulation.

Imperial College

London