

a p⁺-driven, plasma wakefield acceleration experiment aiming to accelerate e⁻ to high energies (GeV-TeV) for application to HEP (e⁻/p⁺)

1st step: p⁺ bunch self-modulation

*AWAKE = Advanced WAKefield Experiment

PROTON BEAMS @ CERN

CERN's Accelerator Complex

Parameter	РЭ	575	3P3 Opi	
E ₀ (GeV)	24	400	400	
N _p (10 ¹⁰)	13	10.5	30	
∆E/E ₀ (%)	0.05	0.03	0.03	
σ_{z} (cm)	20	12	12	
ε _N (mm-mrad)	2.4	3.6	3.6	
σ _r * (μm)	400	200	200	
β* (m)	1.6	5	5	

σ_z=12cm!!

AWAKE

ERN

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

© P. Muggli

Development of the ends

Installed in AWAKE!

A WAKE

Measured $\Delta T < 0.5^{\circ}C$, 150-210°C ∆T/T~0.1%

Source satisfies density uniformity requirements

Expansion Volumes

of a long p⁺ bunch in a dense plasma

 $\sigma_z >> \lambda_{pe} \sim n_e^{-1/2}$

Max-Planck-Institut für Physik

шш

♦ Laser ionization of a metal vapor (Rb), 3-4m plasma for p⁺ SSM only, SEEDING NECESSARY!

 \sim 10m discharge or helicon source for acceleration only (scales to 100's m)

 \diamond Inject short e⁻ bunch ($\sigma_z << \lambda_{pe}$), quality of the bunch: $\Delta E/E$, $\epsilon =>$ beam loading and blow-out

♦Density step to maintain accelerating gradient

SUMMARY

- \diamond AWAKE aims at ~1GeV/m gradient using the seeded self-modulation (SSM) of a long p⁺ bunches in a plasma ($\sigma_z >> \lambda_{pe}$) => e⁻ acceleration Preliminary!!! Analysis to come!
- \diamond Important/interesting SSM results:
 - \diamond Observe SSM (defocusing, µ-bunches)
 - ♦ Demonstrate seeding: SSM
 - \Rightarrow µ-bunch structure (very) stable against p⁺ variations: key for e⁻ injection and acceleration, NO instability
 - \diamond No seeding => SMI or hose instability
 - $\diamond f_{mod} \sim f_{Rb} \sim f_{pe}$
- \Rightarrow Many results not presented, see WG talks and posters!!!!
- ♦ SSM and e⁻ acceleration demo experiments in 2017-18
- \diamond Run II: (2021-): two plasmas, quality of the accelerated e⁻ bunch: $\Delta E/E$, ε
- \diamond Application of p⁺-driven-PWFA: e⁻/p⁺ collisions
 - E. Gschwendtner et al., Nucl. Instr. and Meth. in Phys. Res. A 829, 76 (2016).
 - E. Öz et al., Nucl. Instr. and Meth. in Phys. Res. A 829, 321 (2016).
 - E. Öz et al., Nucl. Instr. Meth. Phys. Res. A 740(11), 197 (2014).
 - A. Caldwell and M. Wing, Eur. Phys. J. C 76 (2016) 463.
 - A. Caldwell et al., Nucl. Instrum. A 829 (2016) 3 P. Muggli et al., arXiv:1708.01087 (2017)

© P. Muggli

A IV-A-K-R