28 September 2017

EAAC17 24-30 September, Isola d'Elba

INO-CNR Istituto Nazionale di Ottica

High-quality GeV-scale electron bunches with the <u>Re</u>sonant <u>Multi-Pulse Ionization injection</u>

<u>P. Tomassini</u>, L. Labate, G. Vantaggiato, P. Londrillo, R. Fedele, D. Terzani, F. Nguyen, G. Dattoli

L.A. Gizzi

Intense Laser Irradiation Laboratory, INO-CNR, Pisa (Italy)

INAF Bologna (Italy)

Dip. Fisica Universita' di Napoli Federico II (Italy)

ENEA, Frascati (Italy)

Largo Enrico Fermi 6, 50125 Firenze Tel. +39 055 23081 - Fax +39 055 2337755

The ILIL@CNR laboratory

The Resonant Multi-Pulse Ionization injection

265 MeV and >1 GeV high-quality [dE/E=0.5%, 0.08 mm mrad] electron bunches with tunable duration

Higher harmonics of Ti:Sa (Ionization pulse)

FEL preliminary results

Towards experimental demonstration at ILIL-PW

INO-CNR ISTITUTO NAZIONALE DI OTTICA

Intense Laser Irradiation Laboratory @ CNR Pisa

http://ilil.ino.it

People

- Leonida A. GIZZI (CNR)* (Resp.)
- Giancarlo BUSSOLINO (CNR)*
- Gabriele CRISTOFORETTI (CNR)
- Luca **LABATE** (CNR)*
- Fernando BRANDI (CNR), Ric. TD.
- Petra KOESTER (CNR), Ric. TD
- Paolo TOMASSINI (CNR), Ric TD
- Federica **BAFFIGI** (CNR), A.R.
- Lorenzo FULGENTINI (CNR), A.R.
- Antonio **GIULIETTI**(CNR), Assoc
- Danilo GIULIETTI (Univ. Pisa), Ass.*
- Antonella **ROSSI** (CNR) Tech.
- Daniele PALLA, Post doc (PI)
- Davide TERZANI, PhD Student*(Na)
- Gianluca VANTAGGIATO, stud. (PI)

* Also at INFN

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

A new infrastructure design study (H2020 for a plasma driven X-ray FEL

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

EuPRAXIA kick-off meeting in Pisa, July 2016

INO-CNR ISTITUTO NAZIONALE DI OTTICA

250 TW Ti:Sa laser commissioning

MAIN BEAM	Front-end	1st Phase	2nd Phase		
Wavelength (nm)	800	800	800		
Pump Energy (J)	1.8	12	24		
Pulse Duration (fs)	40	30	25		
Energy Before Compression (J)	0.4	4.7	7.9		
Rep. Rate (Hz)	10	1	2		
Max intensity on target (W/cm2)	2x10^19	2x10^20	>4x10^20		
Contrast@100ps	>10^9	>10^9	>10^10		
Beam Diameter (mm)	36	100	100		

llil.ino.it

The <u>Resonant Multi-Pulse lonization</u> injection scheme outlook

ReMPI is a SINGLE LASER System (e.g. Ti:Sa) LWFA scheme that can generate extremely good-quality bunches *with tunable duration*.

Intense Laser Irradiation Laboratory-Pisa

www.ino.it

Two-colour injection [L. L. Yu et al. PRL 112 (2014)] is a very promising scheme aiming at generating extremely low-emittance bunches but requires two [sinchronized] laser systems: a long-wavelength (e.g. CO2) for wake driving and a short (e.g a frequency doubled Ti:Sa) for electron extraction.

The CO2 pulse is needed because the long wavelength assures a large amplitude Wakefield though the electric field is lower than the ionizing threshold for Kr9+

The new injection scheme: Resonant Multi-Pulse Ionization Injection

The Resonant Multi-Pulse Ionization injection [P. Tomassini et al., accept. for pub. on PoP (Oct. 2017)] is a new bunch injection scheme aiming at generating extremely low-emittance bunches [currently as low as 0.08 mm mrad but in can be further reduced]

ReMPI requires ONE short-pulse 100-TW class (e.g Ti:Sa) laser system. Since a unique very large-amplitude Ti:Sa pulse would fully ionize the atoms (Ar8+ in our selected example), **the pulse is shaped as a <u>resonant</u> sequence of sub-threshold amplitude pulse**s.

The multi-pulse approach to LWFA has been proposed so far [D. Umstadter et al, PRL 72, (1994)]. A multi-pulse train can generate plasma waves with larger amplitude than those driven by a single pulse with the same energy.

Ideas for MP-LWFA (at 10 Hz and kHz) GeV-scale accelerators have already been presented here

- S.M. Hooker presented last results on MP-LWFA on WP1 on Monday See Cawley et al. PRL 119 (2017)
- Roman Walczak presented a MP-LWFA at GeV scale and kHz rep. rate on WP5 on Tuesday
- Posters in Sessions I and II have been devoted to both ReMPI and MP-LWFA

ReMPI trapping analysis

INO-CNR ISTITUTO

NAZIONALE DI

Pulse-train amplitude must be above the trapping threshold for the

The key concept is that of "minimal transverse momentum rms" $p_{tr}/mc \simeq \Delta a_{0e}$ where $\Delta = \sqrt{a_{0e}/a_c}; a_c = 0.107 (U_I/U_H)^{3/2} \lambda$ C.B. Schroeder et al., PRAB 17 (2014) To reduce emittance a tightly focused beam is chosen P. Tomassini et al (2017) w0_{ion}=3.5-4.5 μm 0.9 0.4 0.4 λ_{ion} =0.4 µm $Z_{R,ion}$ =100-160 µm T_{ion}=40 fs; a0=0.4 Ionization Ar8+->Ar9+ 0.1mc Newborn electrons (one time-step) transverse phase space eps_n=0.051 µm in -0.1mc good agreement with eps n=0.053 mm predicted by the model of Schroeder et al. www.ino.it -1 -0,5 0.5 -1.5

QFluid is a 2D CYLINDRICAL hybrid code for LWFA and PWFA in the plasma fluid and quasi-static regime that is suitable for long propagation simulations.

Laser pulse evolution is solved with the Envelope Evolution Approximation (**second time derivative included!**) Plasma dynamics is solved via the pseudo-potential computation in the QSA Electrons of the beam move as macro-particles under the 3D force that includes the ponderomotive effect.

Thanks to M. Kirchen and R. Lehe for support with FB-PIC

A first possible parameters set is presented here. It is intended either as a bunch injector or a 100 MeV-class accelerator. A flat-density (no guiding) Ar+8 pre-plasma is assumed.

INO-CNR ISTITUTO NAZIONALE DI OTTICA

SETUP A (INJECTOR) - Final Bunch

quality

After about 6mm of acceleration the 265 MeV beam possesses an outstanding beam-quality: dE/E = 0.5%, eps_n<0.08 mm mrad,

Energy spread and emittance with Q=3.8 pC are very low so the natural question is

If we want to use the bunch as a pre-accelerated bunch suitable for energy boosting, is it possible to increase its charge?

 $Q \propto W_{0 ion}^4$ $eps_n \propto W_{0 ion}$

So answer is <u>YES</u> (nonlinear emittance increase due to bunch hopping not included) BUT energy spread will increase to above 1% for a 10pC bunch [beam loading compensation in progress]

To extend the acceleration beyond one Rayleigh length guiding with a preformed channel is assumed. A capillary is placed close to gas-jet nozzle to assure a gentle transition from a flat (pure Ar) plasma to a He plasma channel

www.ino.it

A single capillary filled with Argon could be a valid alternative to the gasjet+capillary since the Intensity threshold for Ar9+ is I_tr=1.4e18W/cm^2 (no strong defocusing from further ionizatio occur)

2D (cyl) maps

Longitudinal phase-space+fields

QFluid4.3 Linear polarization

Driver(s) evolution

Slice analysis with coherence length I_c=0.05 micron (See FEL slices below) reveals a slice energy spread of dE/E_slice=0.22%@peak current (integrated dE/E = 0.5%),

The optimal bunch length depends on the application of the bunch, of course.

- For most of FEL application the length should be of micrometer size to reduce slippage effects.
- For Thomson/Compton backscattering applications with sub-fs duration bunch length should be lower than 0.3 μm

An injection scheme with flexible (and easily tunable) bunch length is therefore optimal for multi-purpose facilities.

 ReMPI can generate [with the parameters currently explored] bunches [and thus radiation] with duration tunable in the range 360 as<t (rms)< 2 fs

Bunch trapping and compression, 1D theory.

In the 1D QSA limit [we are not too far from that in the current working points] the conserved Hamiltonian can be written as

INO-CNR

$$H(\psi, \gamma) = \gamma (1 - \beta \beta_{\varphi}) - \varphi(\psi)$$

where $\Psi = k_p(z-\beta_p ct)$ is the phase of the electron in the bucket. Equation of motion for the phase and the relativistic factor are

$$\frac{1}{k_p c} \frac{d\gamma}{dt} = \frac{\partial \varphi}{\partial \psi} = -E_z / E_0; \frac{1}{k_p c} \frac{d\psi}{dt} = 1 - \frac{\beta_\varphi}{\beta}$$

• Electrons born approximately at rest with the extraction phase Ψ_e , where the normalized potential is $\phi_e = \phi(\Psi_e)$ and slip back in the wake up to reaching the wake's speed at the trapping phase Ψ_e where the potential is $\phi_t = \phi(\Psi_t)$. Since $\beta = \beta_{\phi}$ we get

$$H(\psi_e, 1) = 1 - \varphi_e = H(\psi_t, \gamma_{\varphi}) = 1/\gamma_{\varphi} - \varphi_t \quad \blacksquare \quad \varphi_t = \varphi_e + 1/\gamma_{\varphi} - 1 \quad *$$

• By differentiating * with respect to the phase we get the simple relationship $(E_{7}+1/2\partial_{1}E_{7}\delta_{10})$

$$\sigma(z_t) \simeq \sigma(z_e) \frac{(Ez+1/2\partial_{\psi}Ez\,\delta\,\psi)_e}{(Ez+1/2\partial_{\psi}Ez\,\delta\,\psi)_e}$$

Final bunch length

E.Esarey & M. Pillov,

PoP 2 1432 (1995)

Setting up the bunch duration from 360 as (rms) to <2fs (rms)

The final bunch duration can be <u>easily tuned just by selecting the appropriate delay</u> of the ionizing pulse from the drivers train.

- The <u>minimum length</u> is obtained by placing the peak of the ionizing pulse close to the phase of the null electric field (say $\Psi = k_p(z+ct)=0$). As the ionizing pulse moves away from the $\Psi = 0$ phase bunch length increases.
- Setting up the appropriate phase of the ionizing pulse into the bucket the selected bunch length is obtained.

Case Ψ=0.06 (RED): Ez(final length <u>0.12</u> μm

Case Ψ=0.26 (GREEN): final length<u>0.27</u> μm

Case Ψ=0.52 (GREEN): final length<u>0.57</u> μm

After the ionization pulse passage, the extracted particles possess transverse momentum that essentially depends on pulse amplitude.

 $p_{tr}/mc \simeq a_{0\,ion}^{3/2} \lambda^{-1/2} \propto \lambda$, [QUIVERING, UNCORRELATED] $p_{tr}/mc \propto a_{0\,ion}^{2} \propto \lambda^{2}$, [PONDEROMOTIVE, CORRELATED]

With the same BBO crystal used for the 2nd harmonics it is possible (and experimentally feasible) to generate a **3rd** harmonics. Only phase-matching angle and efficiency change. With a 1st \rightarrow 3rd harmonics conversion efficiency of 8% and 150mJ of incoming 0.8 energy a pulse delivering 12mJ @267nm.

Since minimum emittance scales as a0 (correlated x-px give no contribution) we expect that (WITH NO SPACE-CHARGE included) **the emittance scales as** $\lambda^{-1.5}$.

SAME parameters a C-bunch, but emittance after the injection phase is now 0.045 mm mrad (III harm.) instead of 0.07 mmmrad (II harm.) Not negligible space-charge effects Are present.

What's missing and what are we going to do

The simulations have been performed with a 2D cylindrical code in the QSA, with benchmarks with AlaDyn and FB-PIC.

- Deviations from cylindrical symmetry due to the injected charge are present. Beam loading is currently small so the non-symmetric contribution is very low. A more detailed analysis requires, however, the use of either a quasi-3D code (<u>FP-PIC</u>, probably) or a full 3D PIC code (<u>AlaDyn</u>).
- Beam degradation @ plasma exit must be accurately estimated. In order to do that more simulation with ALaDyn 3D have been scheduled.
- Beam-loading must be tackled to let the beams have charge of tens of pC.

G.Dattoli et al http://fel.enea.it/booklet/pdf/ Booklet_for_FEL_design.pdf

PLEASE NOTE

This is NOT a start-to-end simulation.
1) Exit from the plasma is missing
2) Beam transport is ideal with a full preservation of beam-quality.

Ball of the state of the state

www.ino.it

INO-CNR ISTITUTO NAZIONALE DI OTTICA

FEL preliminary results

Detailed FEL simulation are ongoing. Preliminary analytical results with bunches A (0.265 GeV) and B (1.0GeV) are shown here. Slice analysis is necessary to fully understand coherent spikes generation and lasing. $8.36 \times 10^{-3} \sqrt[3]{\sqrt{2}} I_{\text{peak}}[A] = \frac{1000}{1000} \frac{1000}{1$

Bunch narameters						
А	В	C				
0.265	1.15	1.3				
0.56	0.25	0.655				
812	2200	785				
0.078	0.08	0.08				
0.5	0.81	0.22				
Common FEL parameters						
1						
1.4						
1.3						
	eters A 0.265 0.56 812 0.078 0.5 rameter	eters A B 0.265 1.15 0.56 0.25 812 2200 0.078 0.08 0.5 0.81 rameters 1 1.4 1.3				

INO-CNR Istituto Nazionale di Ottica

FEL preliminary results

	A	В		С
Output FEL par				
FEL wavelength [nm]	48	2.6		2.0
Twiss β [m]	1.26	5.45		6.16
Pierce parameter ρ	0.009	0.003	}	0.0018
inh. broad. gain length [m]	0.086	1.38		0.702
saturation power [MW]	2602	323		861
saturation length [m]	2.3	33		17.7
coherence length $[\mu m]$	0.25	0.04		0.05
sat. power with slippage [MW]	1130	252		826

www.ino.it

Conclusion

Resonant Multi-Pulse ionization injection is a new reliable method to obtain an injector/accelerator with a SINGLE 100-TW class Ti:Sa laser system

Using Argon an 8-pulses scheme is capable to generate a 265MeV bunch in 6mm (gas-jet, flat profile), 1GeV in 3 cm and 2GeV in 10cm (guided)

Bunch quality is outstanding, mainly concerning emittance (below 0.1 mm mrad along E and 0.02 mm mrad along B)

We are working on the choice of the pulse time shaper. A possible configuration with delay masks is being studied.

Bunch length and quality can be further optimized by changing the trapping point [in progress]

THANK YOU FOR YOUR ATTENTION!