Laser-Generated Proton Beams for High-Precision Ultra-Fast Crystal Synthesis

M. Barberio, M. Scisciò, S. Vallières, S. Veltri,

A. Morabito, <u>P. Antici</u>

Larger Context: Applications of laser-driven particle accelerations – multidisciplinary fields

Materials/ Nanoparticle business worth several G\$ with two-digitincrease

Nanomaterials in medicine and nano-imaging

"Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor", *Nature Nanotechnology* 9,1047– 1053, (2014) - Gold nanoparticles act as biosensors in cancer cell detection

"A targeted approach to cancer imaging and therapy", *Nature Materials* 13,110–115 (2014)

Nanoparticle-based imaging plays a crucial role in cancer diagnosis and treatment. Here, we discuss the modalities used for molecular imaging of the tumour microenvironment and image-guided interventions including drug delivery, surgery and ablation therapy.

Conventional NP growth

Methods for nanomaterials using Chemical methods

Chemical methods: the nucleation phase starts with a chemical reaction

Advantage: Good control of nucleation phase (time of reaction in the order of ns). Problem: formation of a surfactant shell on the nanomaterials which strongly affect the nanoparticle's properties

Methods for nanomaterials using Physical methods

Vantage: Good control on the chemical composition of nanomaterials. Problem: the control of particle dimensions and shape is difficult. The particle aggregation is slow with the consequent formation of big particles and aggregates

1.0 um

Laser driven protons can generate high-temperatures in a very short time – useful for NP growth ?

7

Laser driven protons can generate high-temperatures in a very short time:

P. K. Patel et al., Phys. Rev. Lett. **91**, 125004 (2003) P. Antici et al., J. Phys. IV France, 133, 1077 (2006)

Laser-Driven Proton Ablation (LDPA) mechanism

Energy Deposition code confirms Explosive Boiling conditions

Proton heated target at distance of 2.5 cm from the source

Experimental verification on TITAN (JLF)

Explosive Boiling texture on the gold target

Nanoparticle production on the Silver target

Statistics of the Gold Nanoparticles

M. Barberio et al., Scientific Report (published online 2 Oct 2017) P. Antici, M. Barberio, Patent Pending US 14448.128

Thank you for your attention !

Interested ? Contact us !