

WG4 Summary Application of compact and highgradient accelerators

Stuart Mangles, Imperial College, London

Deepa Angal-Kalinin, STFC Daresbury Laboratory, Cockcroft Institute

24-30 September 2017, La Biodola, Isola d'Elba

6 Sessions : 22 talks , 15 posters

Three Themes:

- 1. Application of LWFA electrons and x-rays (6 talks)
- 2. Application of protons (+ions) (6 talks)
- 3. Electron delivery and Light Sources development (10 talks)

1. Application of LWFA electrons and x-rays

Imperial College London UCI University of California, Irvine

Ultrafast X-ray absorption measurements of high energy density matter using broadband X-rays from an electron beam

- Direct spectral measurement of LWFA X-rays over ≈150 eV range, on a single shot.
- Single shot XANES features from Cold Ti targets.
- Looking forward to single shot, sub 100 fs, XANES and EXAFS measurements of High energy density matter.

Laser wakefield accelerators as x-ray sources for biomedical imaging applications

Human prostate

Human breast

Murine embryo

Imaging samples

Human femur

Experimental observation of radiation reaction in the collision of an intense laser pulse with a LWFA electron beam

Observe electron energy loss, and gammaray energies consistent with radiation reaction

Broad spectrum of Comptonscattered gamma-rays

UNIVERSITY OF

University of

Glasgow

Strathclvde

A Muon Source Based on Plasma Accelerators

Luca Serafini – INFN Milano (A. Bacci, F. Broggi, C. Curatolo, I. Drebot, V. Petrillo, A. Rossi, M. Rossetti)

- Why GeV-class Muons? Because they are keys to several strategic applications, in particular radiography of very thick objects (Volcanoes, Nuclear Power Plants, National Security) thanks to their high penetration/low stopping power (compared to photons/electrons...)
- Why Plasma Accelerator? Because of its compactness (ord. of magnitude cheaper and shorter than GeV-class muon section of a typical muon collider)
- The Challenge: run a 10³¹ cm⁻²s⁻¹ luminosity (Lorentz Boosted) e-γ collider at E_{cm}=400 MeV to make a point-like, GeV-class, nsec synchronized, muon source at 1 μ₊^{-/}/s with collimated emission (200 mrad)
- The requirement on plasma accelerator: a few nC at 2 GeV with 20% energy spread and 20 mm·mrad rms transv. emittance.

X/Gamma-ray emission from self-modulated laser wakefield accelerators

2. Application of protons

High-precision nanoparticle generation

Very-fast (1 shot), high-precision (5% SD), tunable nanoparticle generation on neighbor surface

M. Barberio, M. Barberio, M. Scisciò, S. Vallières, S. Veltri, A. Morabito, P. Antici, Scientific Report (published online 2 Oct 2017) P. Antici, M. Barberio, Patent Pending US 14448.128 M. Barberio, S. Veltri, M. Scisciò, A. Morabito, S. Vallieres and P. Antici

Laser-accelerated proton beams potentially enable a quicker and less invasive Proton Induced X-ray Emission spectroscopy on Cultural Heritage artifacts.

Damage analysis of a proton-irradiated CH artifact (ceramic) shows no aesthetical or chemical changes.

UNIVERSITÀDELLACALABRIA

INRS

SAPIENZA

INFŃ

Ceramic from 1650 AD After irradiation Before irradiation Ceramic from AD 1650 M. Barberio et al., After proton irradiation Fe Sci. Rep. 7, 40415 Before proton irradiation (2017)XRF emission Cu -35% No -25% variation

5 6

Photon energy (keV)

9

10

The ELIMED application

J. Pipek, F. Romano, G. Milluzzo et al.,, Journal of Instrumentation, Volume 12, March 2017

G. Milluzzo- INFN-LNS (Italy) - gmilluzzo@Ins.infn.it

Compact laser based neutron source

- Complementary to other radiation sources, like FEL, Compton, THz, already available in the project of large plasma based infrastructure
- Great interest in having at the <u>same</u> place all of these radiation sources especially for cultural heritage studies
- We are going to investigate the use of high energy electrons produced by self-injection to produce neutrons instead of protons/ions from TNSA or similar mechanism

Ultrafast pulsed proton radiolysis in water Delayed solvation time of electron

WG4, EAAC 3, Isola d'Elba Sept 24th – 29th , 2017

b.dromey@qub.ac.uk

3. Electron delivery and Light Sources development

Tunable High Gradient Quadrupoles , A. Ghaith

Concept was patented (QUAPEVA program-Triangle de la Physique, SOLEIL/Sigmaphi collaboration)

7 systems :

- First triplet to focus a 180 MeV beam
- Second triplet to focus a 400 MeV beam
- A prototype

Magnetic center excursion in both planes (x, z) is about \pm 10 µm

C. Vaccarezza

- Three WP's under study:
- WP1: Low Charge-High Current 30 pC-3KA (FWHM) per bunch from Photoinjector with only velocity bunching, suitable both for Beam Driven and Laser driven acceleration in Plasma
- WP2: Low Charge-Low Current 30 pC-100A per bunch from Photoinjector with velocity bunching coupled with a magnetic compression (R₅₆=9 mm), in the chicane to reach I = 3kA (Hybrid scheme), suitable both for Beam Driven and Laser driven acceleration in Plasma
- WP3: High charge-Very Low Currrent 200 pC-70 A per bunch from Photoinjector with velocity bunching coupled with a magnetic compression (R₅₆=16 mm) in the chicane to serve the SASE-FEL, with peak current Ipk=2kA, and the Compton Source in the high flux operation scheme.

FEL Genesis simulation with particle driven plasma accelerated electron beams (WP1)

FEL Genesis simulation with **laser driven plasma accelerated electron beams (WP1)**

results: Centroid distribution at WP1 the capillary entrance (above) and trajectory envelope (right) for $70\mu m$ misalignment on RF and magnetic elements, 150 μ m girder to girder, and 0.1% jitter on quadrupole strength and steerer kick after trajectory correction.

Next steps:

-5.0>1.0

RF phase and amplitude jitters

20

10

Photocathode laser and energy pointing jitters.

30

s (m)

40

50

Commissioning Results From The LUX Beamline For Plasma-Driven Undulator Radiation. A. MAIER

Undulator Upgrade for the LUX Beamline. C. WERLE

First X-Rays at LUX in Hamburg

see also lux.cfel.de

Summary of

Development of a Novel Undulator with a Very Short Period Length @ 3rd EAAC WS WG4 (Sept./27/2017): Shigeru Yamamoto, KEK-PF Plate type undulator magnets with a very-short-period undulator field

NMX-39EH TiN coated 20mm wide, 2mm thick

Field pattern seen through a magnetic viewer sheet

Ultrahigh 6D brightness electron beams from a single plasma acceleration stage

A. Fahim Habib et. al

Nat. Commun. 8, 15705 doi: 10.1038/ncomms15705 (2017)

- A tuneable and flexible scheme for minimization of energy chirp in a single plasma acceleration stage
- Utilizing tailored beam loading by a second high charge bunch
- Relative energy spread is minimized by one order of magnitude
- Ultrahigh 5D brightness + minimized energy spread leads to unprecedented ultrahigh 6D brightness $B_{6D} \approx 5.5 \times 10^{17} \text{A/m}^2 \text{ rad}^2/0.1\% \text{BW}$
- Energy spread scaling law predicts $\Delta W_{\rm rms}/W < 0.01$ % for longer plasma wavelength
- Potentially game-changing for applications, e.g. ICS, XFEL and HEP

Transverse electron beam dynamics in a nanocoloumb-class laser wakefield accelerator. A. Koehler

Betatron radiation as diagnostics

Understand electron dynamics inside plasma cavity

- → Correlate electron dynamics and x-ray spectra
- → Betatron source size at end of plasma channel

