Beam Dynamics and Tolerance Studies of the THz-driven Electron Linac for the AXSIS Experiment.

Kostya Galaydych, R. Assmann, U. Dorda, B. Marchetti, G. Vashchenko, I. Zagorodnov (DESY, Hamburg, Germany)

1. INTRODUCTION

- The **AXSIS** experiment (Attosecond X-ray Science, Imaging and Spectroscopy) is foreseen to provide a fully coherent attosecond X-ray radiation for 3D imaging and spectroscopy.
- The fully coherent attosecond X-ray will be provided by inverse Compton scattering of a laser beam on an electron bunch accelerated in the AXSIS linac.
- The experiment will use a dielectric loaded waveguide to accelerate e-bunches up to 20 MeV

4. RESULTS OF SIMULATIONS

 How much should we correct the central frequency of the THzpulse in order to take into account the outer dielectric radius fabrication error ?

Phase space reconstruction by the frequency tune

Figure 1: AXSIS experiment layout

2. STATEMENT OF THE PROBLEM

• THz-pulse is focused on the open end of the dielectric-loaded waveguide (a), propagates along the linac (b) and after reflection (c) co-propagates with the injected electron bunch (d).

We want to know how the accelerator fabrication errors and inaccuracy of the beam injection affect the acceleration process

Figure 3: Dependence of the frequency correction on the outer dielectric radius fabrication error. The phase velocity equals the speed of light along the line. A thickness of the dielectric is constant along the linac

\bullet The THz-pulse frequency correction will require the frequency tuning precision ${\sim}1$ MHz

• How strong the fabrication errors affect the maximal achievable output bunch kinetic energy ?

Figure 5: Transversal and longitudinal phase space of the bunch at the output for the tuned linac (left) and for the detuned linac with corrected frequency of the THz-pulse (right).

 From beam point of view the tuned linac and detuned linac with corrected THz-pulse frequency are almost the same

• Beam injection misalignment. Offset of the bunch

Figure 2: Schematic of a dielectric (yellow) loaded metal waveguide (gray) with an electron bunch (red) and the metal plate with a pinhole aperture at the entrance of waveguide. Electron bunch moves from left to right.

3. PARAMETERS and TOOLS

• ECHO (developed by Igor Zagorodnov)

 Table 1: Parameters of the linac, e-bunch and THz-pulse.

Parameter	Value	Unit
Linac		
Dielectric inner radius	625.0	μm
Dielectric thickness	77	μm
Rel. permittivity of the dielectric	4.41	a.u.
Pinhole radius	300.0	μm
Length of the linac	100.0	mm
eta_{ph} (300 GHz)	1.0	a.u.
$\dot{eta_{gr}}$ (300 GHz)	0.62	a.u.
Electron bunch		
Beam charge	-0.99	рС
Average kinetic energy	4.77	MeV
Energy spread	10.21	keV
Horizontal (x) beam size	98.50	μm
Vertical (y) beam size	98.47	μm
Longitudinal (z) beam size	11.16	μm
Horizontal beam emittance	0.38	π mm mrad
Vertical beam emittance	0.38	π mm mrad
Longitudinal beam emittance	5.36 $\cdot 10^{-2}$	π keV mrad

Figure 6: Evolution of the beam position for the different values of the initial offsets: $15 \ \mu m$ (blue solid line), $30 \ \mu m$ (blue dot-dash line), $45 \ \mu m$ (orange solid line), $60 \ \mu m$ (orange dot-dash line).

\bullet For initial ${\sim}5$ MeV beam and for the maximal energy gain regime correction of the radial beam position takes place during acceleration

• Beam injection misalignment. Non-zero axial angle injection

THz-pulse

Temporal shape of the pulse Frequency of the pulse	flat top 300 0	a.u. GHz	
Duration of the pulse	133.3	ps	
Peak E_z (on-axis)	240.0	IVIV/m	

Figure 4: The output kinetic energy as a function of the injection time for the optimized linac (top), detuned linac with 1.5 μm outer dielectric radius fabrication error without the frequency correction (middle) and detuned linac with 1.5 μm outer dielectric radius fabrication error with 1.5 μm outer dielectric radius fab

 With the frequency tune shift it is almost possible to compensate the linac detuning **Figure 7:** Charge losses as a function of the angle of injection with respect to the longitudinal direction.

 \bullet For the beam injection angle < 0.5 degree there is no charge losses at all and ${\sim}10\%$ of the charge is lost for the angle of ${\sim}0.65$ degree

5. ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 609920.

