Mitigation of the hose instability in plasma wakefield accelerators

3rd European Advanced Accelerator Concepts Workshop

A. Martinez de la Ossa², R.A. Fonseca³, J. Osterhoff¹, J. Vieira³ ¹ Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22603 Hamburg, Germany ² Universität Hamburg, Institut für Experimentalphysik, 22761 Hamburg, Germany ³ GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, 1049-001 Lisboa, Portugal

Universität Hamburg

September 27, 2017

Timon J. Mehrling^{1,2,3}

Content

Mitigation of the hose instability in plasma wakefield accelerators 3rd European Advanced Accelerator Concepts Workshop September 27, 2017

Plasma-based accelerators Chances and challenges

Hose instability Show-stopper for stable plasma wakefield accelerators?

Mitigation mechanisms Reduction of coupling, coherence and seed

Summary and conclusion

Plasma-based accelerators Chances and challenges

a service

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Miniaturisation with plasma-based accelerators

A key technology for future compact and affordable particle accelerators?

Miniaturisation with plasma-based accelerators

A key technology for future compact and affordable particle accelerators?

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Chance: High energy gain on short distances

Plasma-based accelerators provide gradients > 10 GV/m

Challenge: Stability

- Stability is of utmost importance for any application
- Extreme focusing fields entail large growth rates for beam breakup instability!

Witness beam to be accelerated here (?)

Plasma electrons

Significant tilt from here

HIPACE kefield acceleration with a tilted beam HPACE 3D PIC simulation using the code HiPACE

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Hose instability

Show-stopper for stable plasma wakefield accelerators?

Drive beam (no energy spread)

Propagation direction

Hosing is a challenge!

- Small beam asymmetries amplified \Rightarrow Hosing
- Is beam breakup inevitable ?

Hose instability Show-stopper for stable plasma wakefield accelerators?

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Hosing in Plasma Wakefield Acceleration 3D Simulation with the PIC code HiPACE

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Basic mechanisms of hosing

Basic mechanisms of hosing

Illustration with finite number of beam slices

Basic mechanisms of hosing

Illustration with finite number of beam slices

Basic mechanisms of hosing

Chain of beam particles

Third beam slice

0000000

Exponential growth in time and along beam

• • •

Quadratically amplified oscillation

Illustration with finite number of beam slices

Seminal model predicts exponential growth of beam centroid deviations

Hosing - a crucial challenge for PWFA

Betatron frequency in ion cavity:

$$\frac{\partial^2 X_b}{\partial t^2} + \omega_\beta^2 \left(X_b - X_c \right) = 0$$

$$\omega_{\beta} = \frac{\omega_p}{\sqrt{2\gamma}}$$

Channel centroid equation (adiabatic channel generation, non-relativistic)

$$\frac{\partial^2 X_c}{\partial \xi^2} + \frac{k_p^2}{2} \left(X_c - X_b \right) = 0 \qquad (\xi = ct - z)$$

D. H. Whittum, et al. Phys. Rev. Lett. 67, 991 (1991).

Seminal model: Dramatic implications for PWFA!

Centroid deviations amplified exponentially in time and along beam!

- Limited stable propagation
- litter of final beam parameters
- Emittance growth
- Beam breakup

Reviewing the basic mechanisms of hosing

In the hose instability,

transverse phase space

asymmetries

of beam particles

and plasma electrons are

coherently

coupled

and thereby amplified.

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Hose instability in a nutshell

Hosing mitigation mechanisms

Mitigation of the hose instability Reduction of coupling, coherence and seed

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Plasma Wakefield Acceleration with a tilted beam 3D Simulation using the HiPACE code

$$\frac{\partial^2 X_b}{\partial t^2} + \omega_\beta^2 (X_b - X_c) = 0$$
Red
Plasma to beam

In homogeneous ion-channel:

$$\omega_{\beta} = \frac{\omega_p}{\sqrt{2\gamma}}$$

Reducing density?

Accelerating field scales with E_0 \Rightarrow Not an option!

Other possible approaches:

- Inhomogeneous channel/wide beam
- Linear regime

Coupling

Can coupling between plasma and beam be reduced?

Is response of sheath electrons given by $k_p/\sqrt{2}$ in any kind of ion channel?

No!

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Reduced coupling

- Force depends on beam current and blowout radius.
- Response depends on relativistic mass of sheath electrons

Reduced coupling

Coupling between beam and plasma is reduced in the blowout regime

Beam to plasma

Is response of sheath electrons given by $k_p/\sqrt{2}$ in any kind of ion channel?

No!

In the nonlinear blowout:

- Force depends on beam current and blowout radius.
- Response depends on relativistic mass of sheath electrons

Mitigation of the hose instability

Investigated PWFA example

Setup as in C. Huang, et al. PRL 99, 255001 (2007).

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

 n/n_0

 n_0

Reduced coupling

Growth rate is reduced in blowout regime but still exponential

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Growth still exponential

- Coupling and growth rate reduced
- But: Growth still exponential
- Small centroid deviations eventually lead to beam breakup!

Disrupting coherence along beam

Disrupting coherence of beam particles

Do beam particles with differing initial

$$x, p_x, \xi, \gamma$$

Oscillate coherently in time?

In homogeneous ion-channel:
$$\omega_{\beta} = \frac{\omega_{p}}{\sqrt{2\gamma}}$$

Different situation for:

- Inhomogeneous channel/wide beam
- Linear regime

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Intrinsic beam energy change plays an essential role

Disrupting coherence along beam

Beam energy effects play an essential role

Demonstrating impact of intrinsic energy change on hosing

Beam with no initial energy spread: Comparison of PIC & different hosing models

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Beam energy change plays an essential role

- Striking difference between PIC results and current models!

- Only accurately described when including self consistent energy change!

Disrupting coherence along beam

Beam energy evolution leads to saturation of hosing

Channel centroid equation, blowout regime**

$$\frac{\partial^2 X_c}{\partial \xi^2} + \frac{k_p^2 c_\psi(\xi) c_r(\xi)}{2} \left(X_c - X_b \right) = 0$$

**C. Huang et al., PRL 99, 255001 (2007).

Beam centroid equation incl. energy spread and change*

Predictions of different hosing models at tail of beam (without initial energy spread)

New blowout model and energy change in excellent agreement with PIC simulations

Beam centroid equation incl. energy spread and change*

Acceleration rate-dependent frequency

"Friction" term for finite energy spread (and/or energy gain)

*T. Mehrling et al., PRL 118, 174801 (2017).

New channel centroid equation in blowout regime***

$$\frac{\partial^2 X_c}{\partial \xi^2} + \frac{k_p^2}{2} \left[c_c(\xi) X_c - c_b(\xi) X_b \right] = 0$$

Channel centroid for blowout regime including finite sheath thickness: $\Delta
ho$

***T. Mehrling et al., in preparation

Saturation mechanism generally effective ?

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Predictions of different hosing models at tail of beam (without initial energy spread)

Excellent agreement

Excellent agreement between model & PIC

Hosing saturation from intrinsic energy evolution generally effective

Interpretation using a two-particle model beam Using a two-particle model beam: $X_{b}(\xi,t) = X_{b,1}(\xi,t)\delta(\xi-\xi_{1}) + X_{b,2}(\xi,t)\delta(\xi-\xi_{2})$ One finds: - Decoupling occurs at $t \simeq \overline{\omega_{\beta,0}}^{-1} \sqrt{\frac{3\pi}{\Lambda_{\epsilon}}}$ where $\Delta \epsilon = |\epsilon(\xi_2) - \epsilon(\xi_1)|$ and $\epsilon = -\sqrt{2/\overline{\gamma_0}} E_z/E_0$ - Decoupling generally occurs before depletion time, $t = [\overline{\omega_{\beta,0}} \min(\epsilon)]^{-1}$, if $\Delta \epsilon / \min(\epsilon) > 3\pi \min(\epsilon)$ - Since $0 \le \Delta \epsilon / \min(\epsilon) \lesssim 1$ and $\min(\epsilon) \ll 1$ 0.02 $\Delta \epsilon \sim 0.01$ -0.02 3 2 -1 $k_p \xi$

^copean Advanced Accelerator Concepts Workshop | September 27, 2017

Predictions of different hosing models at tail of beam (without initial energy spread)

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Disrupting coherence within a slice

Uncorrelated energy spread damps beam centroid oscillations

To be effective, mitigation mechanisms need to "kick-in" before beam-breakup!

Reduction of initial momentum deviations

Reducing hosing by plasma tapering

Reduction of the initial hose-seed by tailoring of vacuum-to-plasma transition

*Functionality used e.g. in K. Floettmann, Phys. Rev. ST Accel. Beams 17, 054402 (2014); and X.L. Xu, et al. Phys. Rev. Lett. 116, 124801 (2016) in the context of betatron-matching.

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

1 of hosing by plasma tapering

I hose-seed by tailoring of vacuum-to-plasma transition

Beam centroid in transition

Differential equation (neglecting hose and energy effects in taper profile)

$$\frac{d^2 X_b}{dz^2} + k_\beta(z)^2 X_b = 0 \; .$$

Harmonic oscillator with varying spring constant.

Density profiles and centroid oscillations for different λ

Significant reduction of the spatial hosing seed with appropriate tapers!

Summary and conclusion

T.J. Mehrling | Mitigation of the hose instability in plasma wakefield accelerators | 3rd European Advanced Accelerator Concepts Workshop | September 27, 2017

Summary

Mitigation of the hose instability in plasma wakefield accelerators 3rd European Advanced Accelerator Concepts Workshop September 27, 2017

Current models: Hosing is fundamental impediment for stable PWFA

Initial deviations are exponentially amplified Small asymmetries inevitably lead to beam deterioration or breakup

Coupling is / can be reduced Reduced coupling in blowout \Rightarrow smaller growth rate

Coherence is / can be disrupted

Inherent energy evolution decouples beam slices \Rightarrow saturation of hosing Decoherence from uncorr. energy spread \Rightarrow damps centroid oscillations

Hosing seed can be reduced

Tailored vacuum-to-plasma transitions \Rightarrow reduce initial hosing seed

Conclusion

Mitigation of the hose instability in plasma wakefield accelerators 3rd European Advanced Accelerator Concepts Workshop September 27, 2017

Hosing is a challenge!

Stable acceleration of high quality beams possible over long distances in PWFAs!

T.J. Mehrling

But it can be mitigated!

Other mitigation mechanisms exist: reduction of coupling, coherence and seed.

Acknowledgements

Mitigation of the hose instability in plasma wakefield accelerators 3rd European Advanced Accelerator Concepts Workshop September 27, 2017

Work in collaboration with the **FLASHForward** project

3D-Visualisation tools developed by A. Martinez de la Ossa and Ángel Ferran Pousa using VTK

Simulation results obtained at the Accelerates cluster (IST Lisbon), Maxwell-cluster (DESY) and JUQUEEN (FZ Jülich)

Universität Hamburg

Mitigation of the hose instability in plasma wakefield accelerators

3rd European Advanced Accelerator Concepts Workshop

Timon J. Mehrling

September 27, 2017

